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20. Abstract

Parzen (1979) suggests a location and scale model for the quantile

function (inverse distribution function) of a random variable. We

extend this model to the two sample and k-sample problems and some

results are given which, when fully implemented, will yield more

general solutions in the analysis of variance. Most of the work here

concerns the location and scale model suggested by Parzen (1980) for

the two sample problem for testing the equality of two distribution

functions versus local alternatives.

We implement this model (its tests and estimators) for seven under-

lying densities. We then provide criteria for choosing or determining

whether an underlying density models the differences of the two samples

adequately. These criteria allow one to choose the best of several

underlying densities for the data. We illustrate these techniques by

analyzing data sets from the literature and making comparisons with

other authors' techniques. We also show how the Parzen (1980) model

is related to many of the techniques developed for studying differences

of two samples over the past 50 years. We suggest extensions of

Parzen's model. Finally, we give a few simulated examples and suggest

what type of simulation study is needed to further define the usefulness

of the various models presented in the dissertation.
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1. INTRODUCTION

1.1 The Problem

A fundamental problem of statistical theory and application is the

two sample problem, i.e., comparing two populations given random sam-

ples from each. For example, researchers are often interested in in-

ferring the effect of a treatment on a response variable for some

general population. The inference is based on the observed responses

from a control group and a treatment group selected from the popu-

lation being studied. The various methods of dealing with these two

data sets have been generalized to k groups and have also been used

in developing general statistical theory. The two sample problem has

indeed been a cornerstone of statistical science. We begin by giving

a series of definitions basic to the approach we shall use. In these

definitions we follow Parzen (1961, 1967, 1979,.1980).

1.1.1 Definitions and Notations

We have independent realizations {X1 , X2, ..., X I and"' m

{Y1 Y2, .... Yn) of continuous random variables X and Y having con-

tinuous increasing distribution functions F(x) and G(x) respectively.

The distribution functions F(x) and G(x) often represent those of the

control and treatment groups respectively. A popular model for Xi

and Y,, which is assumed in this work, is that both distributions are

a location and scale change from a common distribution function,

F (x), i.e., for -- < x <

This dissertation will follow the style of the Journal of the
American Statistical Association.
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The sample distribution functions are defined by:

F mx 1 I(Xi<x) ,- - < x< ,

C.(X) E I (Y 4.x) , - .< x < ,

where

I(u1<Iu) - 0 ,if u i > u

M 1 ,if u i < u

The combined sample distribution function is given by

H(x) - F(x) + (1-X) G(x) ,(1.2)

where X and N - m+n. We can regard H as a nonparametric es-
N

timator of the distribution function

H(x) - X F(x) + (1-X) G(x)

We also use the sample quantile functions,

- --1 --1 - ~-1
QX(u)'.F (u), Q Y(u)=G- (u), and QH (u)mH- (u) ,(1.3)

where in general the quantile function Q is defined by

Q(u) - F (u) -inf (x:F(x) >u} , Q <u <1 .(1.4)

We also define a sample comparison distribution function by

D(u) [H (u)] 0 0<u < 15
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and the population comparison distribution function corresponding to

D(u) by

D(u) = F(H- (u)] , 0 < u < I . (1.6)

Alternative definitions for a comparison function are FG-I, GF- , G-F

and F-I G. Doksum and Sievers (1976) and others have studied some of

these alternative comparison functions.

Switzer (1976), Doksum and Sievers (1976), Wilk and Gnanades-

ikan (1968), Doksum (1974) and Steck, Zimmer, and Williams (1974)

have also studied comparison functions. However, here D(u)-F[H -(u)]

is preferred because it tends to have more jump points than any of

the other forms. It is, in a sense, "smoother" than any of the

others. Furthermore, {R%.; 1< i < N} the set of relative ranks

of the X sample are given by

mF(H-

as noted in Pyke and Shorack (1968) . In sections 4.1-4.3 we will

provide some data analytic comparisons of our approach with those

using alternative comparison functions. These comparisons will also

emphasize the theoretical differences.

In modelling D(u) and Q(u) we require the density-quantile

function defined by

fQ(u) - f(Q(u)] - F'(Q(u)] , (1.7)

and the score function defined by

J(u) = - (fQ)'(u) , (1.8)

i~

- ~,
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to exist for all results presented in this work.

We further define some models for comparing the two samples.

Under H 0 F-G and alternatives close to the null hypothesis in0

location and scale we use Parzen's (1980) model for D(u) defined

by

D(u)-u=(l-X){Of Q (u)+Q (u)f oQo(u) , (1.9)

02-010 2-01

where =- and i = -- We also compare the two samples by

a model of A Q(u) = Qy(u) - 0x(u) , the difference of the quantile

functions. This model will be suggested by Theorem 1.1 as

foQ (U)AQ(u)=( 2 -Ui foQo(u)+(0 2 - Cl)Qo(u)foQo(u) , (1.10)

which is valid under all location and scale alternatives to R :F-G.

We denote estimators of D(u)and AQ(U) as D(u)and AQ(u), respectively.

Estimators of D(u) and A Q(u) can be obtained using the results

of continuous parameter time series regression estimation developed

by Parzen (1961, 1967). A detailed discussion of these estimators

is given in sections 2 and 6 and is essentially taken from

Parzen (1979), section 9 and 10, and Parzen (1980).

We define a Brownian bridge or a tied down Weiner process

to be a normal process denoted by

{B(u) , 0 < u < 1} , (1.11)

which has zero mean and covariance kernel

KB(UlU2) min (ul,u 2 ) - ulU2 , (1.12)
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Finally, we define the reproducing kernel Hilbert space (RKHS) of B(u)

to be the space of L2 differentiable functions with inner product

<f,g> ,f q f'(u)g'(u)du + 'f(p)g(p) + Iqf(q)g(q). (1.13)

p,q p p -

Throughout this work we denote weak convergence of a process

by "." and convergence in distribution by "-".

1.1.2 Questions to be Addressed

One desires to infer from the samples how the populations for

the two samples differ. The distribution functions F(x) and G(x)

each have, in general, an infinite number of parameters and it is

our task to summarize or characterize the differences in these

distribution functions. The quantile function has advantages in

this regard as remarked in Parzen (1979) and Wilk and Gnanadesikan

(1968).

One explanation of its statistical virtues is the fact that

Q(u) = X(.) for j-1 < u <
n - n

where X 0) is the jth order statistic. The order statistics are the

most universal set of sufficient statistics since all sufficient

statistics are a function of the order statistics.

The problems we address are illustrated by the t-test. If

one assumes the data are normally distributed with a, M a2 P one

obtains an exact solution (t-test) to a well-posed problem. Of

course, these assumptions are usually only approximately true.

Thus, the t distribution, which gives both a test of Ho: U1 - I 2

and a confidence interval for PI - '2 provides exact solutions

e 4*.



to approximate problems. If 01 + a2 , we have the Behrens-Fisher

problem, which is usually more realistic and currently has no exact

solution.

The nonparametric problem considered in this dissertation

assumes that the data arenot known to be normally distributed.

One problem is then to choose from a collection of F functionsO

those which best fit the data. Another problem is to develop

techniques to estimate and test hypotheses concerning the parameters

0- °2-l a 1 PI  " - ii . ando 2 - These techniques
a01 a0122 

1 *
then provide tests of H : F-C and an estimator, D(u), of D(u).0

Through D(u) - D(u) we provide techniques to determine:

(1) whether the two samples differ in location and scale

parameters for a given f , and

(2) whether the assumed density, f0, can model the data

well.

We implement and expand some of Parzen's (1979, 1980) results.

In cases where several F may model the data, one can compare the0

various estimates of 6, *, u 2 - 1l I and a2 - al * When quanti-

tative or oualitative differences exist among the various Fd we

will suggest larger samples for more power, or subject matter based

selection of F rather than statistically based selection.0

1.2 The Solution

We introduce the solution in this section and give the detailed

implementation of the solution in sections 2.1 through 2.5and 6.2.
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The aim of the approach implemented in this work is to simul-

taneously estimate location and scale differences between two

populations. Our approach emphasizes estimators of location and

scale differences that are asymptotically optimal for the same

underlying f . The approach may also provide diagnostics for0

skewness, long tails, bimodality, and estimates for nonconstant

shifts in the various quantiles of a population using techniques

from Parzen (1979). The approach begins with D(u) - F[H- (u)]

and its raw estimator D(u) = F[H-(u)].

Since F(x) = G(x) iff H-I(u) - F- (u) = G- (u) iff D(u) -

-1F(H (u)] - u, the comparison function D(u) can be used to test

H F(x)=G(x) by testing H : D(u)-u. The asymptotic distribution

of D(u) under H : F=G, is given byo

_u1-L o
( -u - ~ B(u) - cB(u)

0

where A X0 A 0 < A < 1. A proof of this fact is outlined in
N 0 ,

Parzen (1980), and essentially given in Pyke and Shorack (1968).

Parzen's (1980) representation

V[D(u)-u-(l-X)(f oQo(u)+'Q(U )f Q 0(u)] + cB(u)

is adopted here. In essence, this is the result of a linear Taylor

series expansion for D(u) which we discuss in section 2 in

greater detail.

As a result, with Parzen's (1961, 1967) results, we simultan-

eously estimate e and s from a commonly assumed f as
o

I-
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-1

F <foQo,foQo> <foQoQo(foQo))
(l-) A "  L<foQ Qo(f Q )><Q (foQo) Q(f Q

L ~ 0 L 0 0 0 0 0 0O 0 0 0 0

[ <foQo, D(u)- u  ]
<Qo(foQo), D(u) - u>

where

<fl'f2>p~ - p f(u) f2(u) du +

1 1qlq)f1 f(p) f2 (p) + -f (q)f (q)

and

<fl f 2> -lim <flf2>

p 24 p,q

q-4

Estimators obtained when one uses <fl,f 2 > , 0 < p < q < 1
p,q

are briefly mentioned in section 2.4 where we obtain trimmed or

truncated estimators of e and tP for the exponential density. Also,

note that the inner product <fllf 2 > exists for many more
p,q

density functions than does <flf 2
>  since the latter requires that,

for J-1,2 , fj (p) - 0 as p - 0, 1. The computational formulas for

8 and 0 are surprisingly simple for many densities. The

similarities of tests based on 8 and 0 to other tests will be

established in sections 5.1 through 5.4. Table 1 wives 9 and *
for several f densities. Before proceeding to the derivation of

o
these estimators we will consider a model for the quantile functions.

I~~ ~~~ -' .• &-

*~..
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The quantile functions QX and Qy can also be plotted to

compare the two samples. These plots and their box plots, as de-

fined in Parzen (1979), give initial indications of skewness, bi-

modality, and differences in location and scale. A model for the

differences at each quantile is given in the following theorem.

Theorem 1.1: If (Xi ; i - 1, ..., m) is a random sample from

X-U1
F(x) - Fo(- ) and {Yj ;j - 1, ..., n} is an independent random

x- u
XW2

sample from G(x) - '(-), where f exists, f >0 is continuous and tail
02 0

monotone [see Parzen (1979), p. 116], then, as N - , such that

NN Xo (O<o < 1),

IN foQo(u)[(cY(u)-(X(u)-(l 2-ijl)-(0 2 -ol)Qo(u)] c B(u),

2 2 2

where c 2 .o l + (1-X o ) a2 and B(u) is a Brownian bridge.

Proof: From Parzen (1979), since f is tail monotone, we have
0

LrN(foQo(U))(( ¥(u)-W -a2Qo(u)) L- o)A a B2(u),

as N - . and

AR (f oQo(U) )(Qx(UM-4 -0 1Qo0(u)) - _Xo a 1 B 1(u),

as N -b a where B1(u) and B2(u) are independent Brownian bridges.

Thus, the independence of &X and Qy yields

,'(foQo(u))([(Qu (u)- x(U)-(12-Pl)-(02-0 )Qo(U)] L Z(u)

!.
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where

Z(u) - (1-A ) a2 B2(u) - A I B 1 B(u)

Now, E[Z(u)] = 0 , since B1 (u) and B2(u) are zero mean normal

processes. For 0 < u 1 < 1 and 0 < u2 < 1, we have

coy [Z(u 1), Z(u2)]= coy [(1-xo).0 2B2(u1)- o 4aI 1 (u1)

(l0A) a2B2 (u2)-Aoaa1 B (u2) ]

SE[(l-o)a 2B2(u )B2(ua)-A o 1a(1-X)

.a2B2 (u) I B1(u2)_0o a1 (1 ) a 2B1 (ul)
2

.B 2 (u 2 )+A oaIB 1 (u 1)B 1 (u 2) ]

E[(1-A )o2B2 U) (u2) 1+
2 2 (

E[Xoa 2B (ul)BI(U 2 ]

(I-A 0)2 cov[B 2 (u1),B2 (u2 )] +

Ao 2 cov[Bl(Ul ),B (u2) ]

2 2

[Xao2+(l-A )a2][min(u ,u2)-uu 2  .

Since linear combinations of independent Gaussian process are

Gaussian, we have
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Z(u) [X +(1-X) 2  B(u)

We thus have a model for . =Q - QX ' We also emphasize that AQ(U)

seems to be a very interesting and interpretable function since it

quantifies the differences between X and Y at every quantile,

uC(O,f). We will then be able to obtain diagnostics for how the

different quantiles of the poptlations are changed by the treat-

ment. Further, some commonly ised diagnostics which are

functionals of AM Q are o2 Q (u)du and the

difference in medians AQ(2). Furthermore, if AQ- k, a constant,

then a1=3 2 and ul 2 (k = 0 implies Pl=12 ) .

This approach will thus provide:

(1) tests of v = 12 for several fo 9

(2) tests of a, = a2 for several fo '

(3) simultaneous tests for (1) and (2) for several common f 0

for each sample,

(4) estimators for the parameters of (1), (2), and (3),

(5) models for estimating the difference at all quantiles,

AQ(U) ,

(6) graphical comparisons of the two samples

(7) a basis for theory on similar results for skewed and

bimodal data

(8) a basis for theory on similar results using trimmed

estimators, i.e., inner products with 0 < p < u < q < 1.

I.

- ', -1~-
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1.3 Contributions of this Research

We implement and extend the techniques of Parzen (1979, 1980)

by:

(1) giving calculation formulas for 8 and J for seven

underlying densities;

(2) using the relation of 8 and ji to other linear rank

test statistics to provide finite sample size tests

and parameter estimates based on 8 and 'k

(3) providing calculation formulas for the two parameter

exponential distribution for truncated estimates of

0 and * in the two sample problem;

proving the asymptotic normality of D(u) = [D(U

D(u ... D(uk)k for fixed {u i = 1, ... , kI;

(5) proving the asymptotic normality of 6(u) - D(u) for

fixed {ui, i=l, ..., k) , which we use to select an

underlying f ;
O

(6) deriving a model for AQ(u) = Qy(u) - Qx(u) , the

differences at each quantile, u

(7) giving estimation formulas for 2- i and a2  1

simultaneously based on Q and QX

(8) finding the asymptotic distribution for AQ(u) =

Qy(u) - Qx(u) at fixed u ; and

(9) providing graphical comparison techniques via D(u) - D(u)

and Q(u) - Q(u)

4

''-". ... . ' . ... - -' . ... r 
'

... .. . .. .. ..... '' " i.,.,. .... lli: 
"

.. ....... .. .... kC .. ... "-
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We emphasize that all the theoretical contributions in this

work are based on a location scale difference of two independent

random samples with an assumed underlying f family common to both

populations.

I
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2. STATISTICAL INFERENCE BASED ON D(u), e, and

In this section we present the basic method for making inferences

about two populations given random samples from each which are in-

dependent. We assume the two populations and samples are as given

by definitions in section 1.1.1. In section 2.1 we outline the

results of Parzen (1961, 1967) which provide the theory to suggest
S2-- I -2- 0- 1

the estimators e, 6 , and D(u) for e = a ,and D(u) =°1  01

F[H I(u)] also defined in section 1.1.1.

In section 2.2 we use these results to obtain the computational

formulas for 8, 4, and D(u) which lead to the relationships given

earlier (Table la/b, p. 9) for several density functions f . In sectiono

2.3 some large sample distribution theory for the estimators ob-

tained in section 2.2 is discussed.

Since the methods of section 2.1 through 2.3 do not apply for

all choices of f0, in section 2.4 we show how we may use truncated

estimators using formula(l.13) for the particular case of the two

parameter exponential f . Finally, in section 2.5 we describeo

some finite sample size distributional results for the estimators

of sections 2.1-2.4.

2.1 Time Series Regression and Preliminaries

Using the definitions in section 1.1.1, Parzen (1980) has

suggested a model for D(u) which we use to obtain estimators ofLI 7h
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2-Ul 02-01

8 =- , = and D(u). The model is particularly sug-01 °

gested when 8 and p are near zero, i.e., the remainder terms of a

Taylor series expansion are small. For D(u) = FH- I(u) when 8

and 0 are small, Parzen (1980) suggests that we may use

l-X
D(u)-u = (l-X)[8 f oQo(u)+tQo(u) fo0o( u)+(-) B

x-Ij
This model briefly is a Taylor series expansion of Fo about (- )

when e and 'p are small. A sketch of Parzen's justification for

D(u)-u = (l-)[e foQo(u)+QO(U) foQo(u)]

is given below.

Derivation of Parzen's Representation for D(u)-u

Since e0 = 2-1i and a1 (1 4-) 0 2, we have

X2 2  X-Ul-6al

G(x) FC-)F_ (l ))
0a2 0a1 1

-l 2
Since (i+) 1- 0 (when P is small) and eip ! 0, we have

@
GC(x) -" F ( )1l-ip) - 6]

o a 1

X- l1 x-P 1
- F o(- ) - [e + ,(--)]}

A linear Taylor series expansion of this representation of G(x)
x-lg iabout -- ) gives

I0
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x-)J1  x-x-

G(x) "F o ( -) + (- l 1) [-8- (---)]
0 CY 0 a a1

Substituting this in H(x) = XF(x) + (l-A) G(x) gives

x-I xI

H(x) " XF(x)+(1-X)F(x)-(l-X)fo - )[8+( )]
0 a01

x-J x-u]1

F(x)-(l-X)f (-)8+,P(- )]
o 0, 01

-A.

Letting x = H- (u) and rearranging terms, yields

H- (u)-i-.(u

D(u) - u + (1-X)fo( l)[e+( 01
0

11 -(u)-l) F-1 (u)-i' - -

Since [f( )-fo (  )] and [F (u)-H (u)] ' are an order

smaller than 8 and 0, as e and ' go to zero we have

F -(u)-i F - I

D(u)-u -" (1-X)f 0 -(--) +u ]1

S(1-X)foQo(U)[8+ Qo(U)

The error term of( ) B(u) that Parzen suggests is adopted from

Theorem 4.1 of Pyke and Shorack (1968) with the constants of their

Lemma 3.1 and equation 3.7. We give the result we need in Theorem

2.1.

Theorem 2.1: If the conditions of Theorem 4.1 in Pyke and Shorack

(1968) hold and F(x) - G(x) for F and G as defined in section 1.1.1,

then
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AN (D(u)-uL B(u)
0

m

where X N -x Ao(0 < x < 1) as N - and B(u) is a Brownian bridge.N N o 0

Proof: Pyke and Shorack (1968) define

LN(u) = IN [D(u)-D(u)) = ,1 {F[H'(u) -F[H-(u)])

and show for

1

LN ' (u) = L(u) , < u < 1

0 , 0 <u -- N

that pOLNo L ) _ 0, where p is the uniform metric, and

LN  (u) L L o(u).

Under H F - G, we have0

L o(u) = (1-x ) ( - B (u) - (l-o) B2(u)}0 0 1 0 2

where B (u) and B2 (u) are independent Brownian bridges. As in our

Theorem 1.1, we have

L (u) = (1 - 0) (c B(u)}

where c = X- + (1-x )- 1 Cl )]- io 0 0 0

Therefore,

(1-X~ 1-x
L0 (u) "( B(u) 0 ( 1) B(u),

0 0

U- i
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and

0

We note that althouah this error term is only shown to he correct when

0 = = 0, we shall assume that it is aoDroximatelv correct for 8 and

1j close to zero.

That is, we use the Parzen (1961, 1967) results to obtain

estimates of e and * under H : = = 0 which we assume will be0

useful for 6 and * near 0 also. Exactly under what conditions this

is j' stified is an open research problem. One can calculate estimatcrs

for all continuous f Q and Q (foQo) in the RKHS of B(u) (see
0 0 0-0 0

section 1) with

<fl~f 2 > lim <fl f2>
P- 0 f,q
q-+l

where

> -
<f1f ~2 >~ f q fj(u)f (u)du + IflCp)f 2(p) + -Lf 1 (q) f2 (q)

The conditions of Lemma 2.1 are sufficient for the estimation of

0 and using Parzen (1961, 1967). This gives

(1 A ) (G)= -

where

<f Q 'f Q > <f QQ 0 (f Q )>

S L0Qo(foQo)'f Qo > <Q (f oQo)Qo(foQo )>

00 000 00

I. ' "
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and

<Q 0(fQ)D(u)-u>J

as in section l.2,for a solution to the normal equations

(- 0G

The estimators 0 and 'pthen give

D(u) -u + (I-X)[8 E QO(u) +4pQ(u)fOQ (u)]

using Parzen' s model for D(u).

2.2 Calculation of 0, '.and D(u)

In this section we give some lemmas useful in calculating E

and I for various f We then calculate e and 'pfor seven different

f densities.
0

We consider here the following f Cx); < x < unless

otherwise specified)

1 -x 2/2
Normal f 0(x) M-e , F~x W (OW

Logistic f (x W ex(l + e~ F O(x) + (lex)l

0L0
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Cauchy f x) = '-l(l+x 2 )-  F - 1 )-

0 0 2 wr

x) e x<O , F (x) e4, e x<ODouble 2 - ~ o 'x) -je < '

Double - , -x

Exponential = 1 , = 1- e , x>O

2 -1

F (x) - (-x)-, x<O
"Ansari- f (x) 

=  (l xl)- 2

Bradley" 2+ [-(1+x) -1],x>O.

1 1 < 31
f (x) 1, xi< F (x) -, x < -

"Quartile" o - 4 0 16x - 4

1 +x, xE(_i162 1 xi 4 4 4

16x 4

-X -X
Exponential f (x) = e , x > F(x) = - e X > 0,

O, x O, = 0, x < 0 .

The formulas for E and S require several inner products. The

calculation of these inner products can be simplified for many f0

by using the following lemmas.

Lemma 2.1: If f oQ and Q (f Q ) are L2 differentiable functions,

then

(1) <foQ0,foQo> W f0 1 2(Udu

when
22

(fo0o(p) ] f oQ o( l-p)1

Ci) 0 ,lim lim
P P p4O P
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(2) <Q (foQ, Qo(oo> - 101 [ - Q (u)J o(u)12 du

when

(i) 0 - urn. 0 O(p)f OQO(~ 2 li urn [ (1-p)f Q 0(1-p)]

P-10p.O p

(3) <f QP Q0(f Q )> = f0 1 Q(u)J02 (u)du f f0 'J oudu

when (i) and (ii),

(4) <f Q ,D(u)-u J~ Judu-
00 0 0 rn 0oN+1-

when (1), andii

()<Q(E Q )D (u) -u> f 1 Q (u) J(u) du- Q ( i)J(i

0" 0< 0 0 00 0o o oN+Io N(+1

when (ii).

Proof: [Adapted from Parzen (1979, 1980)]

(1) By definition, J O(u) - - Cf QO ( u) which gives

<f OQ ,f 0Q 0> - rn <fEQO 0 Q 0>
000 p~q

(fnf~-J() [fQ 0(p) 2 [f OQ0 (q)]2
= I~qIJ~)du + + -
p+ P p1-

q.1l

. Jf 0 02 (udu
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when MI.

(2) Since q 0(u) -1/f OQ (u), and

[Q (uf Q (u)J - Q (u)(f Q )'(u) + f Q Cu)Q'(u)
0 0 0 0 0 0 0 0 0

=-Q (u)J 0(u) +- f OQ (u)q 0(u)

- 1 Q Q(U)J (U)

<Q (f Q )IQ (f Q )> 01[l-o (U)J (u)]2 du

when (ii).

(3) Similarly.

<f QIQ(f Q ) Is r If-J(u)Hl-Q (U)J0 (u)Jdu

f I0 Q (U)J 2 (u)du*- fl J uMdu

when Mi and (ii).

(4) Similarly, since D(l) - 1 and D(0) 0,

<fQD(u)-u> f11- ( (u)Jd[D(u)-uJ

f- f 1
0(udu 0 f0 J o Md D(u)

f f 1 J01uMdu I i

Ii-R

recalling that D(u) has jumps - at u -M N+l
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(5) Also,

<Q (f Q ),D(u)-u> f l -Q (u)J (ufld(D(u)-uj
0 00 0 0 0

f f0 dD(u)-f 1Q (u)J (u)dD~u)-l+f 1 Q(u)J uMdu

1 -Im R. R.
=10 Q0 (u)J uMdu - Y Q j

0 0 Mi=1 Nlo N+l

Remark: The tail conditions of Lemma 2.1 essentially are the conditions

needed besides L 2differentiability for f 0 00and Q 0(f 0 00) to be in the

RKHS of B(u) for p -1-q=-0. To make this clear is why we include

Lemma 2.1. This lemma is used to show a and are linear rank statistics.

Lemma 2.2: If in addition to f OQ and Q 0Cf OQ ) being L2differentiable,

we have that f 0is symmetric, then

(1) <f QO.QOfoQ )> W0

when Mi and (ii) of Lemma 2.1 and

(2) <f QPDu)-u> =--io~

when (i) of Lemma 2.1

Proof: Since f 0symmetric is equivalent to f 0Q Cl(-u) - f 0Q 0Cu) or

1 0 -) -J 0C(u) or Q0Cl1-u) -Q 0()and Lemma 2.1 holds, we have

Cl) <f 0 Q (fEQQ)> .jl 1Q U)J2 (u)du-f 130(uMdu

.f0 Q CU)J (u)du+f 3(uMdu

=0,



26

and

(2) <f ,D(u)-u> w- i i-I)' since fO1Jo(U)du - 0.

Theorem 2.2: If foQ° and Qo(foQo) are in the RKHS of B(u) with

p - 1 - q 0 0, F - G, and f is symmetric with the tail conditions0

of Lemma 2.1, then

m R,
(i-) - [folio (u )d u l - m 0i oN+l

and

(1-A) fl [0
1[l-Qo(u)Jo(u)2du[-l[/oIQo(U)J (u)du

I M R i R
I (ii+( ) o( j )R.

Proof: Since Lemma 2.1and 2.2 give the terms of Z and j, we have

( = y, as given in Theorem 2.2.

Note that our E for the two sample case is* the same as the one

sample Z in Parzen (1979) and Eubank (1979). In order to carry out

the estimation of e and * as given in the above theorem, we need

foQo(u), Qo(u), and Jo(u) for each density. They are given inTable2

Weobtain the results in Table 2 for the normal, logistic,

and Cauchy densities as in Parzen (1979) and Eubank (1979). The

others are also obtained by using

Qo(u) F0- (u),(foQo ) (u)f (F (u)] or f oQo (u)-l/Qo (u)

or J o(U) - -(foQo ) ' (u).

'
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2. Densitv-Ouantile. Ouantile and Score Functions

f0 foQo Qo 0

'oa I -i-12 -l
Normal e 't-( (u) it (u)

Logistic U (1-u) log U 2u-1

Cauchy 1 in2 (Wu) tan [ 1(u-) -sin(2wu)

IT

1 1 1

U , U < log 2u , u < , -1, u <7
Double 1 1 1

Exponential 1-u, u I -log2(-u), u > , u > 2

2u2 ,u <  1-1 u < < 1
Ansari- 2 2u.:2 2
Bradley 2 1
density 2(1-u) u 2 -1 +7 (-u)- u> 4(1T 2 2 2

2 1 1 -i 1 -32u
6u, u < < -- u2, u <

4 4i 4-
13 i 13 13

Quartile 0 , u (1 ,1) 1 u-1 , uc(_ ,, , u (1, 3

density 2 3 1 -1 3 3, u > ,-- .l-) - I u> 4  32( -U), u•-

Exponential I - u log (1-u) 1I

*Not in RKHS of Brownian Bridge process for p - 1 - q 0.

1,
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Thus, we obtain (I- ) -1 as above.

Theorem 2.3: The estimators of 8 and * in

D~u-u~-) [o QI-A 0
DM u- (1-V [e f oQo(u)+HpQo (u) f 0Qo0 (u)] 4- ) SBM

0

are given in Table 3 for the seven densities.

Proof: Eubank (1979) has given Z for the normal, logistic and

Cauchy f . Since the tail conditions hold, we have

(Normal)

<f Q of Q> 1 fo oI -l(u)1du-co (x)dx-

0 0 0 0 f 00 ud 0 [()d~"x

and

<f oQo,Qo(fo Q )> 0 since f is symmetric

<Qo(foQo) ,Q o (foQ o > =f{_[-u)2 u
0 0 0 0 0 00

= 1-2 f x2f(x)dx + f x4f(x)dx - 2.

Then,
Z 1 1 0
- [0 •

For . we have

<f QoD(u)-u5 - I t
0 m i N+l

and

<Q (fQ),D(u)-u> 1 - ! l(R ]2
omI
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3. Computational Formulas for e and W

Density (1-') e (1-A)^

I -I R. 1 1 -1i .2
Normal m (N) 2 I- )

Ri

R i R
Logistic 3 - ( l(oiN+I 2 1

m N+I 3+r 21m--

N+1

R. 2 R. R.
Cauchy 2 E sin(2r, 1 ) ' E sin[2n( 1()tan 1 _ -)]I

m N-+-I 5m N+ N l 21
R. R. R.

Double I L.signH - -E log{2[min( -- )-Exponential m 2 N+l m N+l N41

"Ansari- R. R. R R . i
"Ansar(-131 - 1 )sg(! 312E s 1 n 1

Bradley" m N-' Nig 34 m 2- -)sign (2 _+l

"Quartile" t+ T _

R -N+) 1>N+l)a

m1 a
m R,

Exponential (Not covered by RKHS Theory) 1 + 1 log(l - 1 )

m 'N+l
(Assumes 8 known)
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which yields

rn R.

M iZ~l N+l

and

(Logistic) Again, since the tail conditions hold, we have

<f Q fQ > - fjl (2u-.1) 2d

By symmetry of fop <f QQ 0Q (f0 0 )> = 0.

By Eubank (1979),

<Q 0(fQ )I (Qf Q)= fi [l-(2u-l)lo.u L 2 du =-r

Then,

For.&, we have

<f0 Q D(u).-u> l j(2u-l)dED(u)-u] 1 _-

and

<Q 0(f Q ),D(u)-u> f f0
1 (l-(1ogji- )(2u-l1dED(u)-uJ

1 M Q( ) (Ri
QC-)m~ ~ o- l0N+l
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which yields
6 m R.

e 3 in N+1

and

m R. R. [ R 1
3 _ 9 (I low[- )/i- ) [2 -l 1]3, 2mi=l l Nl

(Cauchy) Since the tail conditions hold, we have

<fo Q0f Qo> f sin2 (2iu)du =

By symmetry of fo cf oQoQo(foQo)> = 0

and
<Q (fQ)Q( >12d 5
Q(f0Q (foqo> =fi[i + sin(2iru)tann(u - )l = 

Then, 2 0~
For g, we have

R
<f Q ,D(u)-u> = ± sin[2r(-)]

0 0 m N+

and

<Qo(fo),D(u)-u> s in (2 )ta 61 -'<~ ,u = 1 + .Ysin(2r-!)tan[T(N-- - 1) ]

0~ 0f 0 )Du- N+l N+l 2

which yields

= 2 m R
0 - sin 2n(- 1-)

S N+l
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and

2 2 m R R
Il) - 5 sin[2T i~)tant(l 21

(Double Exponential)

Qf > It 2 1 fd+ (-)du+lim-lf Q (p) 2 +lim-[ f Q (0)]

00O 0 0 0 p+0 0

1 4- Jim p + Urn (1 0q

P-0O q-+l

Again, by symmetry

12 2-1
<f Q IQ (f Q )> = 0+lim-p log P-I jimf-- (l-q) log2(1-q) = 0.

00 0 o0 0 PPP+

<f(fQ )I 2 fjlI_ (u)]2

Q(fu)>I f[+QM du + du

+ lim' [plog2p] 2+lin- [(I-q) log2 (1q)l2

IM2 f0(l+log2u) 2du-2lim p-2 lim p 1
0pP+ 0 O

Then, 

E 1 = l 0

'For &, we have

<f Q ,D(u)-u> -fd[D(u)-u1 + fl' (-l)d[D(u)-u] + Jrn p[D(p)-P]
0 0 0P+O

- lJim (l-q)(D(l-q)-(l-q)]

- ~sign -- i
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Next,

<Q (f Q),D(u)-u> =J(l+log2u)d[D~u)-u]+ 4(llog2(l-u)]d[D(u)-u]

+ lim p log (2p) [D(p)-p]
p -10

+ lrn {(l-q)log[2(1-p)H[D(q)-q)}
q-1

m R. R
1 1 i
m log 2[min(- N 1 -

which yieldsm N+ ' Nl

8=- l N+l

and

= m R. R.
-Zlog 2[mine--,1-

Si=1 N+l N+l

("Ansari-Bradley")

<f Q0 9 ,fQ > = o(-4u) du + 4(1-u)] du + lrn 2 [2]2

1 2 2+ lrn - [2(1-q)
q I -q

2 2 4
3 3 3

Again, by symmetry of ft

<Q (f Q ),f Q > 0 + lim -(2p 2)( (1
0 00 0 0 p

+ lirn ! f2(1-q) 2 ]2[1(L) - 1] 0
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Now, we have

<(f Q )IQ (f Q )> jo(4u-1) du + f1[4C1-_u)_1]2 du
0 00 0 00 0

+ lirn 1 [(1..L)2 P2 12 + I im

p.0  +- 11 1-q 12}2

+ + }

3 3

Then,

For I, we have

<f Q ,D(u)-u> fl 4u dtD(u)-u] + f~ [-4(1--u)Id[D(u)-u]

0p+ 0 1

" li 1)2(1-q) 2 Dq)q

4 m R R, R,

M ig(- Nl inN+1 N+l
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Next,

<Q (f Q)D(u)-u > r Q (U)J (udu - J0IQ (U)J (u)d D(u)

+- lrn 1(1 - )2 P2 [ D(p)-p1

+- lirn.L 1 1 -) 2(l-q)2 ID(q)-ql
q1 -q 2(1-q)

inR R.
S1+; j msign('- X L)(_--)

m -N+l N+ 2

which yields

.=rn R. R 1 R.

and

3 + 1-2 1 y- 1 sign(I

("Quartile")

<fQ f ,~Q> f 11 J 2 (u)du + lrn -1(16)2 2 4 + urn 19(16) 2 (1q) 4  32

By synmmetry,

1 22 1 1

+i -rn- [16(1-q) ~j- 0
q-ol 1-q 1 -
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Next,

<Q(fQ) ,Q(fQo)> f - u (32u) du

3/4
+f1/4  [i-(u--90] d

+ f3/14 [1- 6 (1-u) -32(1-u)]
du

+11rn 1 1 2

ia p[(- 6)p I

+ lir _ [- ( L)16(1-q)2

For g, we have

<foQ0 ,D(u)-u> =f 0
1_Jo(U)d[D(u)-u] + Urn i 16p2 [D(p)_p]

+ rn 16(1-q)2[D(q)-q]

q-l1 l-q

I 0 + 0 

Then,

. ... -32
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Next,

<Qo(fQ ),D(u)-u> -- o dD(u) 3- 4dDCu)

0p40 p

+ q I i 16(i 2

.rn [D(q)-q] 16 (-q) 2

ql 16 1qq-1

m RjI[ (N+l),3/4(N+l)]

which yields

[ R R 1

mL (FT + i (-T-l)j
R i< (N+l) R i>3/4(N+I )

and

[R1 fE (N+l),3/4(N+l)]

(Exponential) Here we use f x) e-  x > 0, and assume
0

8 0 since

<f 0 QJ Q> = f01 J 2 (u)du + lira I(fQo(p)]
2

+ liran--[f Q (q)12  1 + 0 + 0 M CO
q-1 1-q 0 0

This means we use the model D(u)-u - 1, Q0 (f oQo). We have

I0
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<Q (f Q)IQ(f Q f [1-log(l-u)-] 2 du+lim (log(l-p) -(l-p)]20 0 0o 0 0o 0o ) > =

+ lim j_!l[log(l-q)-
1 (1-q)] 2

qi

=I+0+ 0=I

Next,

<Qo(foQo),D(u)-u> = 101 tl-log(l-u) -1]dD(u)- 0
1 [1+log(l-u)ldu

+ lim ± (l-p)log(l-p)-l[D(p)-p]
p-N

+ Im i q (l-q)log(l-q) [D(q)-q]
1-l

=1+ og (1 -N

Assuming 8 = 0, we have

m R1 + log(l - - )
m i= I

Here, 1 = E(X) and a2 = E(Y).

a2-a 1 2 "2Remark: Since , = , we have t + 1 = - We note- is
0 I  01 1

the ratio of scale parameters which is often studied by researchers

(for example, the F-test, Siegel-Tukey, Ansari-Bradley, etc. and

more recently by Bhattacharyya (1977)). Thus, the estimators and

tests given here for * also provide results which may be used for

-,- .----
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o2
the ratio of scale parameters, 

2

2.3 Test Statistics and Confidence Intervals

In this section we provide the asymptotic distribution of e,

4), and D(u) at fixed u given in Theorem 2.2 and 2.3.

2.3.1 Inferences about 0 and J)

Parzen (1980) provides the joint asymptotic distribution of 6

and ' in the following result. The proof of this fact is essen-

tially also given in ourmethod of vroof in Theorem 2.5.

Theorem 2.4: If fo Q and Q (f Q ) are in the RKHS of B(u) with

p = 1 - q = O,F=G and e and ,; are as given in section 2.1, then as

A 2N = N ° (0 < X < 1) and N - ,we have

N N6) 0 -0-

-D N2[(0), y1 Z

where y =A (1-A and Z is as in section 2.1.

Remark: Statisticians often define quantiles with other notations.

For example, define z by Z ' N (0,1) and P(Z < z)a aI 2"

In terms of the quantile function we define z m  -2).

We also denote Z I by C - (cij). Theorem 2.4 gives us the following

confidence intervals, regionsland tests of hypotheses.

Note that the confidence regions are proved correct for e and of zero

although we may still wish to use them when 8 and 4 are moderate.

V. i011
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Corollary 2.1: If f is the correct density and D(u) is given by (1.9),

then for y- A (1-A ) we have

(1) A (1 - a) 100% asymptotic confidence interval for e

is

c~i
e z (--)

Ct Ny

(2) A (1 - a) 100% asymptotic confidence interval for 4

is

a N
2 

2
(3) A (1 - a) 100% joint confidence region for e and '

is given for f 0symmetric by

e z ( 1l)
a Ny

and

c22 ,
z Ny

Corollary 2.2: For D(u). given by (1.9) a test statistic for

H 0 e p 0 is the quadratic form

0

L Ny(.) Z(.) -~x (2)
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Remark: C - Z - c ) was calculated for several f in the

preceding section and c11 and c22 are given in the following table

for convenience.

4. Mlagonal Elements of Limiting Covariance Matrix

fo 11 c22

Normal 1 1/2

Logistic 3 9/ (31!')

Cauchy 2 2/5

Double Exponential 1 1

"Ansari-Bradley" 3/4 3

"Quartile" 3/32 1

Exponential (assume known I
location
parameter
8 - 0)

If one did not trust the D(u) model, then a nonparametric test
of H : F - G or H D(u) - u may be constructed from the distribution of

0 o
s up vN D(u)-uDu

-usup ctB(u) I. Durbin (1973) gives expressions for the

distribution of suplB(u)! which suggest teat statistics which do not

depend on a parametric model for D(u). One may thus use a test based on

supvi!D(u)-ul as a diagnostic when comparing two samples.

Using D(u) and the asymptotic distribution of i and we -may

find approximate confidence intervals for D(u) when u is fixed and

I
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our model for D(u) is correct.

2.3.2 Confidence Intervals for D(u)

From the asymptotic distribution ofD(u) given in Theorem 2.5

we may obtain confidence intervals for D(u) at specified u. First,

we give two useful results.

Lemma 2.3: (Brown (1970), Corollary 3.1) For two square integrable functions

f1(u) and f2 (u) on 0 < u < 1 and in the RKHS of B(u) for p-1-q-0,

E[fO I f1 (y)dB(y)fo
1 f2 (y)dB(y)]fo

1 [fl(y)-fof 1 (u)du
l]

0 [f(y)- f2 (u)du]dy

Lemma 2.4: For f Q and Q (f Q ) in the RKHS of B(u) with

J (y)
W (y) 1 0()W() fOIJo2 (U)du

and

-Q o(Y)Jo (Y)
W2 ) =r o1 [l-Q (U)J oU)] 2du

we have

(1) f 1 WI(y)dy - 0,
0

(2) f W2 (y)dy - 0 and for f0 symmetric also0 o

(3) f 1 Wl(Y)W2 (y)dy 0
0

Li -
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Proof:

r 1~(V 1j 2( -li1
(1) 1 W (v)dv I [ 2 (u)du] T (v)dv 0JO I . o

since J (u) = -J (I - u).o O

(2) f y,,(v)dv = {fn t I-Q (u)J (u)]-du}I f[l-Qo(Y)Jo(v)]dv
0 

0

=0

since

S1 01

jr [1-Q (V)J 0(v)]dv = f [Qo(u)foQo(u)] du

I I
= (Q (u)f [0o(U) P}

0

since 0 (f (0) is in the RKHS of B(u) with p = 1 - q - 0

(3 W[-Jo (u)fl-Q (u)Jo (u)du(3) " JoWI(y)W9 (y)dv 1 2

(f J I.(u)du)(fo[1-0 0(U)J (u)] du)00O Qo o

-0

since J0(u) =-J (1-u) and Qo(u) -- Qo(1-u)

In the following theorem we give the asymptotic distribution

of D(u) under the null hypothesis, H : F = G.
0

Theorem 2.5: If f is symmetric, foQ and 0 (f 0 ) are In the RKHS
0 0 0 0 .0

of BO) with p = 1 - q = 0, the conditions of theorem 2.1 hold, and

F G, then as N " such that 0- < o 1), we have
N o o
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[L
[N [D(u) ul L Wo )/)dB(y)

+ 0 (u)f 0 (u) 1W 2 (y)dB(y)}

-7 (U.)

which we call "the Brownian bridge representation of D(u)", where

Al(y) and W,(v) are given in I.emma 2..

Proof: By definition of D(u) we have

,,iD(u)-i] = ,N I-: V l(U) + f (u)],

where t = f U ) I) and f i) (u) f u ()" Also (by definition
0 00 0 0 0

L-' : ~(~[f)y

and

- jq'W, ()dYD)v -V]

where WI, and W, are defined ii Lemma 2.-, md and , are given in

Theoremn 2.. This oi.,es

-uI v I,! , (D(v)-v. 4f (u) 2 (y)d['N(D(v)-y)
(- ) u1 (

" y)4 ,' ),v d~(~)v
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Since fl(U)Wl(Y)+fz(u)W2'(Y) is L, and YNCD(y)-y) L c B(y)
1 1 2 2

1-X
where c = , we have

0

v'NtD(u)-u] f[ (~ly+2() () dcB(y)

c{f (u)foWl(y)dB(y)+f2(u)f6W2(y)dB(y))
1 01 202

This gives,

L .( o)111/N[D(u)- u] ) fQo(u)foWl(y)dB(y)+Qo(u)foQo(u)foIW2 ()dB(y).

From this representation we are given the asymptotic distribution of

D(u).

Remark: Although we state the theorem under H : F = G, we hope that
0

for e. M i/i and rN N//N , i.e., local alternatives, we

may expecta similar result. The argument needed is exemplified in

Lepage (1975), Hajek and Sidak (1967), Chapter VI, and in many of

their references but complicated here by the error term.

Corollary 2.3: For the assumptions of Theorem 2.5, a (1 - a) 100%

asymptotic confidence interval for D(u) is

D(u) _ z Cf2f IQ (u) Il 2 Qo(U
a N0 0 (1t22 0
2

IA
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where c 1 1  foJ 1 2 Cy)dy arnd c 22  10IW 2 
2 (y)dy

Proof: We assume the result of Theorem 2.5 to obtain,

V[Z 1 (u) c 2V~f1()f W(y)dB (y)+f(u) f 0W2 (y)dB(y))

=c f [ QO (u)IlVEJo W 1(y)dB(yfl+,Q 02(u)

*Vjf 0 
1 W2 (y)dB(y) 11

since QW(y)W (y)dy - 0. Further,

v[J0
1W ICy)dB(y)] - E.([f 0

1W 1 (y)dB(y)1 
2

M f0
1tw1Cy) - fJlW 1uMdu 2 dy

- f0
1W1

2 (y)dy

since f0'1 (u du -0 and

V(f0
1W 2Cy)dB(y)I - E(f 1W 2 (y)dB(y)]

2

= f0
1I[W 2(y) - f 1w 2 (u)du] 

2

a f0
1W2 (y)dy

Note: The values of c 1 1 and c 2 2 for seven densities are given

'riTable4 (p. 41). The same densities have f Q and Q given inTable3 (p. 29).
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The distribution for D(u) will be usedfor evaluating the model of

D(u) and for selecting f in section 3.
o

However, we first illustrate estimating 0 and p with

0 < p < u < q < 1 and provide these trimmed estimators for the

exponential distribution.

2.4 Truncated Estimation for the Exponential Distribution

In this section we modify the estimation from 0 < u < 1 to

0 < p < u < 1 - p < 1 for the two parameter exponential distribution.

Since f Q (u) = 1 - u does not satisfy the left tail con-
0 0

dition that lim i (f Qo) 2(p) exists., we can not estimate 8 using
000

all 0 < u < 1. The following theorem implements simultaneous

estimation of 8 and ip based on calculating truncated inner products

as defined in formula (1.13) with u truncated t9 the interval

0 < p < u < 1 - p <.

Theorem 2.6: For the location and scale exponential density and

0 < p < u < 1 - p < l,if we use Parzen's D(u)-u representation, we

have

:R

where

S(a ij) and ZL = (gi,

and

p
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a -a in2log (l -p),
12 21 p

022 :12~ log 2 (1-p) + (lp) log (lp) -p log p
22 p

g lD(P) + D(1-o) 1 _ CI/RiP)
I-p N+1 l-]

and lgl R

- ~i~r ep, l-p])

-D(1 -p) log p + log p

which are all calculable from the data and p.

Proof: Parzen (1979, 1980) gives reasons for using 0 < p 'u < 1 -p

< I.Thus, we have

a 11 <f OQ ,f 0Q 0> -f p1 -pj0 2(uMdu+ Ifo)2()

p'l-p

+ 1 (f Q 2 2 (q)

ullP 
(l-q 

20 0

- ~1 1 - I 2

- -P + 1

p



Also,

o< 1 0 IQ (f Q )> 0 fp I du

+ 41-P 2 1081-p)- +.ia &log (P
p P,

- f,. log y dy-1+')p
-p

2
..iLL log(l-p)-P log p

p

~(+2lUp)g-)

p

lexct,

an'sQ (u)foQ0 (u), Qo(u)foQ (U)>

1- 1 P[1 .tog1..)dU4i log 2 (1-p) 1(1- P) + 1 (log 2

2. du + I a - og.-P p log 2  P ,

.pp

wh~ere

1-P2 P-lg d

p [+1og(l-u)]Zdu f- IP( 1+log Y) dy * f p1 'Idu du

I'prlog u u

p
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- 1-2p + 2[(l-p)log(1-p)-l+p-p log p+pJ

2
+[ (l-p)log Cl-P)-(l-p)log(l-p)

2
+1-p-p log p+p log p-P]

M (l-p)log 2(l-p)+(l-p)log(l-p)-p log 2p-p log p.

Combining the above expressions yields

a2 log2(l-p)+(l-p)log(l-p)-p log p
22 p

For.& , we have

9, <f QD(u)-u> f f-P [-J (u)]d[D(u)-ul+If Q (p)(D(p)-pJ
0p'l-p p 0p0 0

+1 f Q0 (l-p)[D(l-p)-l+pI
p00

- f 1 du-f1 dD(u)+ !-2(D(p)-p]+D(l-p)-l+p
p p p

=(12p)- p Ri D~) D(l-p)-l+p

N p) eflp)l- ]' LR Ri-lp

- p (P)D~lp)-- m{ #- d[p'l-pl}

Finally,
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-f 1 ~l+logC1-u) Id(D(u)-u]+ Z1.(l-p)log(I-p) (D(p)-p]
p p

+ -:7 log p ED(l-p)-l+pI
p

1 #64+ (#.e~p,l-p] ]+ 7log(l- R. 1-p

-f
1 -plog u du- 1 -- log (1-p) D(p)

p p

-(log p)D(l-p)+(l-p)log~l-p)+(1-p)log p

1" C[P'- lo+ p D(l- p)lgP lglpDp

Corollary 2.4: For the assuimptions of Theorem 2.6 andwJith p < the

results of Theorem 2.6 for simplify to

sl.- ad I+1 o~ R,
92 m R ~ N+1-p

Proof: Since p < !,we have Ri IT...<- for all 1., D(p)0O, D(l-p)J.,

and z~~ I(p'l-P]) m U thus giving g, and S,, as desired.
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One may still use all of the data when using this corollary and

its estimates of 0 and 0. The asymptotic approximations are obtained

by replacing all <fl,f 2> with <fl,f 2>pq although the distributions

may not hold. We also note that the left tail is where the tail con-

uition is not satisfied and that one may desire to use 0 < p < u < I

as a basis for the estimation with this density. Other than the

corollary, we offer no choice for p at this time. A topic of further

research is to choose p to minimize a criteria such as variance or

mean square error of e and 0.

In section 2.5 we give some remarks on some finite sample

size distributions for e and 1P for 0 < u < 1.

2.5 Finite Sample Distribitions of e and

In this section we discuss finite sample size distributions of

6 and 4. These are obviously needed when n and jn are not large.

They would also be very useful in seeing how large n and m will

need to be in order to use the asymptotic results.

First, under H : F - G we know that each possible ordering of0

the [X I and {Y i} in the combined sample is equally likely. One

may thus enumerate all possible rankings and record e, 0, D(u), and

D(u) for each ordering. This yields the complete distributions

under H0

Under H a: 0 0 or q # 0 the rankings are not equallya

likely and the problem is more complex. We must: (a) find it,

(b) simulate it, or (c) approximate it. This is a topic for

further research.

6,
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Another source for the finite sample size distributions of 0

and 4) arises from the fact that they are often simply linear

transformations(which are monotonic) of classical linear rank

statistics which often already have finite sample size tables

available. For our use we merely take the appropriate linear

transformation of the tabled critical values using the following

theorem.

Theorem 2.7: If 6(or *) is a linear transformation of
N

T - cla(Ri) and finite sample tables of percentiles for T are availa-

ble, then these tables easily yield percentile tables for O(or p).

Proof: Table l(p. 9)gives values of a and b for various linear rank

test statistics T which have tables available, such that a 8 + b - T.

Clearly,

a - P(T > t a P(aO + b > t )

- P(O > a (t - b))

If a 0 + b - T, we have

a = P(T > t) P( > a -(ta - b))

Theorem 2.8: For fo symmetric, an approximate a level finite

sample size test for the simultaneous H : 8 - 0 is given0

from a size aI test of H: o0 and size a2 test of H

where a 1 2

1



Proof: Under H , P(reJ.Ho - 0) - i P(reJ.Ho: . )

-- a . Then,

P(reJ. 9 a 0 or reJ. $ - 0) - 2(1 -

-P(rej. H 0 : e - 0 and rej. HO: - 0) .

Since f is syetric, 9 and , are asymptotically independent, so

- 2
P(rej. 0: 6 - 0 and rej. Ho: '0 - 0) - (1 - ,1 -- a)

Then,

P(rej . H0: 9 - -V - ) 2 2-F- I+2 vT--(1- )0

as desired.

These methods for testing H : F-G are based upon linear rank0

statistics, as the test statistics are functions of linear rank

statistics with score functions determined by the assumed model f 00

In order to model the data and to obtain more accurate and interpretable

tests and estimators, we will develop methods to decarmine which of

several f.'s best fit the data. We begin this development in theo
next section.
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3. MODEL SELECTION

In this section we begin developing criteria to select a model

for D(u). For example, in ordinary regression analysis one often
R2

makes a choice among models based on R or predictability of the

dependent variable or interpretability of the coefficients of the

independent variables. Such criteria may be developed for the

approach we take in the two sample problem.as given below, e.g. Theorem

3.2. In particular, we will develop criteria for determining whether

f models the data adequately or whether f and a location parameter or0 0

scale parameter difference adequately models the data, D(u). In this

case, the difference between the predicted and the observed values is

D(u) - D(u), a stochastic process for u c(0,1). We state the

asymptotic distribution theory for D(u) - D(u) in section 3.1 and

suggest some measures of fit for the various f densities in the
0"

results of section 3.2. It is the measure of distance between D(u)

and D(u) that will allow one to choose f which best models the
0

data.

3.1 The Asymptotic Distribution of D(u) - D(u) under H
0

We develop this distribution as follows:

(1) From Pyke and Shorack (1968) and our Theorem 2.1 we have,

under H ,

1-N

/N- (D(u) - u]. 0 B(u).
0
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(2) Using section ".3, Theorem 2.5, we will have, under Ho

V [D(u) - u] Z, (u),

where Z1 (u) is a zero mean normal process

(3) Then, under Ho,

ii(D(u)- ul - (D(u) - u - [-(u) - D(u)

and we will show, under Ho,
-L

Vi(D(u)-D(u)] - Z(u) - Z (u)-( >x 0) Bu),
0

where Z(u) is a known 0 mean normal process given f .0

One way to characterize Z(u) is directly from D(u) and D(u).

That is, D(u) is a functional of D(u) and we know the asymptotic dis-

tribution of D(u). Perhaps a more elegant way to study Z(u) is to use

the Brownian bridge representat ion of fD(u)-u] and '&[D(u)-u]

by studying Zi(u) - c B(u). These arguments are illustrated in

the following theorem, for F-G and f0 symmetric.

Theorem 3.1: Under the conditions of theorem 2.5, we have

V5 (D(u) - D(u)] Zu)

where Z(u) is a 0 mean normal process with covariance kernel for

0 < u1 _< u<, 1
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Kz (u1,u 02 () (1) - o Q Iu o 0 u2)
a 2 o (u02 du

Q CuI )f Q (u )Q (u )f fQ (u2o1 00o1 o1.oo

J0 
1 1-Q(u)Jo(u)V 2du

1-x 0
Proof: Let c C.Then, as in Theorem 2.5,

0

ViR[D(u)- ul =f 0
1(foQ 0(u) Wl(y)+Q(u)foQo(u)W2 (y) Id(V'R(D(y)-y)1

and,(31

IiN-[D(u)- ul I (y < u)d['iiD(y)-y)], (3.2)

where

1(y < u) =1 ,y < u

-0 ,y> u

Subtracting (3.2) from (3.1), we have

*cf0
1[f Cu)W (Y)+f (u)w (y)-I_ Cy<u)]dB(y)

=c~ffi) .7 (y)dB~y)+f (u)f0
1IW (y)dB(y)-B~u)I

Thus, the asymptotic mean of /NitD(u) - D~u)] is

E[Z(u)l cf I(u)Eft1W I(y)dB(y)]

+ cf 2(u) E( 0o W2 (y)dB(y)] - c E[B(u)]

0,

Nab
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ince 1% (v)dv r1.,vd 0 Letting 0 I In ~ 1 0~ d

we

F{~it c (t1)1 W

+ f(v) d B v)- t

1 f(u'))f 0
1W (v )dB (v)

lu,)I'W()dB(v )-B(u)J2

c f(u )f (u,)Efo (y)dB(y)] 2

-E[B(u 2 )f 0 
1 WI(Y)dB(y)]f 1 (u I

+ f (u )f (u ) E(f I W (y)dB(y) 2

- E[B(u 2 )f 0
1 W2 (y)dB(y) ]f 2 (u 1

- f 1(u 2)E[B(u I)J0
1 W,(y)dB(y)]

- f2(u 2 )r[(u ,~( 1 u(yd(y1- ll(1-u2)}

)+f 1(u 1)f f1(u2 + f 2(ul)f 2(u2)

1 2' f0
1J 2(uMdu f0

1 [l[-Q 0(u)J (U)1 du

f1 (u I)f 1(u 2) uI) u2
1 1 2. 2 22 u)f(

f0
1J 0(u)du f0 1-Q 0(U)J(u)]

2 du

f I(u 2 f1 (u I) F2(u 2)f 2(u 1

fol1 lol(tI)du fo 1 f-Q 0(u)J (u)J du



2%(u 1 ) f (u2) f2(u )f2(u)
C {u(-u,)- f0

1  ud _ JI lO Jo "(u ) d u  Jo u ()2d

= Kz(ulu 2) ,

since f (u) - f oQo (u) and f2(u) - Q0(u)f Qo(u).

Corollary 3.1: For the assumptions of Theorem 3.1, u-(u,,u,....)',

D(u)D(u ... and ..... u,], we have

- D[N D(u) -D(u)) - N (0 :.)

where. -(a ), ij Cu u), and "ik denotes the multivariate

ij 0 j K

normal distribution.

Now, for u - U, ,uU,,...,,. we use

'N [_(u) - D(u)) - Nk(01 -k,

where - ij ) as above under the assumptions that f is symmetric

and ' and are "small". Note that k, depends on the underlying f

:n essence, by studying D(u i) - )(u i ) for ui -

i - 1 ... , N, we study the residuals of a regression model. One

may further study the application of classical methods for analysis

of residuals in regression analysis to these residuals.

One may then determine the quantiles, ui, where D(u) fits
Ll

the data well and where it fits the data badly. The main use for

the distribution )f D(u) - D(u) is as an indicator of how well

an underl',ing F density will model the data, D(u). We ;ive some
3
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methods for determining the fit of D(u) to D(u) in the next section.

3.2 Some Measures of Fit

From the distribution theory for D(u) - D(u) we may devise

test statistics, whose distributions will provide a test of the

location scale model with f specified as the underlying family.
0

Computing these values for several hypothesized f families will0

allow us to choose the most appropriate f for modelling the data0

as a local location and scale difference. This also may indicate a

location scale model is not viable or that a and ' are too large,

if we determine D(u) does not fit D(u) within chosen limits.

We may accept D(u) as an adequate description of the data

provided it matches D(u) at (ui, i = 1, ..., k} where the u.

are fixed at some particular percentiles of interest, in the sense

of Eubank (1979). Another set of ui of interest may be the data

points, i.e., ui ;i=i ... , N.

Theorem 3.2: if the conditions of Theorem 3.1 hold, then a measure

of the fit of D(u) to D(u) is

-1

D 2(u) = Ny[D(u)-D(u)]' [D(uQ)-D(u)] X 2 (k)
k

where 2(k) denotes the central chi-square distribution with

k d.f.

Proof: Assuming Theorem 3.1 results, this is A standard

application of the distribution of quadratic forms of normally



61

distributed vectors. The degrees of freedom depends on the number

of ui chosen, i.e. ui ; i = 1, ... , k)

We may also choose which of the f seem to model the data wello

by calculating Fisher's extension of Mahalanobis' distance as

defined in Kshirsagar (1972). That is, we use

-1 ^ - I

6 (u) ={NyD(u)-D(ufl'Xk ED(u)-D(u)1

as a standardized distance measure of D(u)-D(u) for each f

We choose the f which yields the smallest 6D(u) as that f which hest

models D(u) by D(u). Eubank (1979) gives some indication of

optimal ui values to choose for each f
0
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4. DATA ANALYT[C COMP,%'SONS WITH OTHER APPROACHES

In this section, we analyze three data sets from the literature.

The kneecap data in section 4.1 will illustrate what information our

methods provide when we fail to reject 11 : F=G. The rat data in
0

section 4.2 illustrates a rejection of H due mainly to the location

difference and provides some interesting comparisons with other

methods. The coronary heart disease data sets in section 4.3 also

illustrate rejection of H , but the fit of the model suggests0

further analysis. We only analyze the marginal distributions of

the two bivariate components of these coronary heart disease data.

We would like to thank David Scott for his kindness in sending us

a listing of his unpublished coronary heart disease data for

analysis and comparison.

4.1 The Kneecap Data in Switzer (1976)

Switzer (1976) analyzes two sample data with his techniques.

The data set is given in his Table I as right kneecap congruence

angles in degrees for 40 male subjects and 40 female subjects. We

know the data was supplied by R. G. Miller, but do not know the

questions it was gathered to answer. Consequently, any

analysis is limited.

Switzer's analysis gives 94.5% confidence bands on t -G-IF.0

The figure (Switzer's Figure 1) appears linear, where the bands

are not infinite, and suggests a location scale model for the
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differences between male and female right congruence kneecap angles.

Wilkand Gnanadesikan (1968)have named a plot of q versus G- [F(q)]

a Q-Q plot and pointed out that linearity means Y is a location

scale transform of X in distribution. Our e and 0 will estimate

this relationship. Switzer also gives 94.5% confidence sets for

max [t (q)-q], min [t (q)-q], and (-5+l0)-lf
- 5 [to(u)-u]du

-10,- 0 -10-5 0 -10 0

as [-5,12], [-7,8], and [-5.9,10.11. He points out that these were

obtained for a limited range and for Smirnov's confidence procedure

only. Otherwise finding such sets is much more difficult. Switzer

estimates e in

(a) t (w) =w + e (b) t () = 2w + 8
o 0

for three different confidence procedures to obtain the results below.

Procedure Median Quantile Smirnov

(a) -5,7 -5,11 -2,8

(b) 4,16 5,21 12,14

These models, (a) and (b), are special cases of a general location

scale difference between X and Y. He regards the short confidence

interval for e in (b), from a Smirnov based procedure, as in-

dicative of 2 being a bad value of the slope to fit these data and

suggests fitting general parameters.

Switzer then parametrizes t (w) as follows:

(a) t(W) = (I + X) w + e
0

(b) t(w) = w + 6/(1 + Aw), A,e > 0
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In (a) the treatment effect increases with w and in (b) the treatment

effect decreases as w increases. SwiLl.er then reports joint con-

fidence intervals for 0 and X in models as given in his Figure 2.

In the Parzen approach we hypothesize a general location scale
1-11 o1 a2-01

model and allow -- and 0 - to be positive or negative
CI  1

obtaining qualitatively similar models to (a) and (b). Since we

assume a location and scale model for G and F, we have

t(w) M G F(M)
0

2 + a2 Qo(F(w)]

-12 + 2 0 0

W-U1

= 2  + 2  (- -1"
01

- u 2 + 022 -

01

U l + (i + 4) w ,
2 a1

where
02-o1

01

So, Switzer's e in model (a) is u2 - 1 and Switzer's X is our 4,
2 0a1

except that our * can be negative also. We add the assumption that

the distributions of Y and X are of the same family, F .0
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Our analysis of Switzer's kneecap data yields the following

results. A comparison of the quantile functions, Q and QX9 in

Figure A suggests P2  l UI and a2 < TI or 8 > 0, p < 0.

Three choices of f yield the following estimates.0

p values

f e /v(e) u V($) for H : 6-*=0
0 o

Normal .206 .233 -. 134 .158 .46

Logistic .400 .387 -.214 .187 .31

Cauchy .145 .316 -.100 .141 .70

So, regardless of f we fail to reject H and further remark 8o o

and P are all within two standard deviations of zero.

A quick comparison of D(u) - D(u) graphs in Figure B

gives an indication that the logistic density may fit the data

best with D rising faster than D in all three cases. This indicates

F /G = f/g > I at those quantiles. The tests gnd estimates of

section 3 have not been implemented in the computer program yet.

4.2 Doksum and Sievers (1976) Rat Data

These authors have also developed techniques for estimating a

general function t(x) where F(x) - G[ x + t(x)], or t(x) = G-IF(x)-x.

In fact, Doksum (1974) has developed the asymptotic distribution of

t(x) = G F(x) -x. The questions of interest in their paper for the

two sample problem are
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FIGURE A. Quantile Functions for Female and Male Kneecap Data
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riGuRE B. Graphs of DOu) and D(u) verSUS U for the Kneecap Data
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(i) Is the treatment beneficial for all the members of the

population, i.e., is t(x) > 0 for all x?

(ii) If not, for which part of the population is the treatment

beneficial, i.e., what is (x: t(x) > 01 ?

(iii) Does a shift model hold, i.e., is t(x) - e, for some 0

and all x?

(iv) If not, does a shift-scale model hold, i.e., is

t(x) = a + Bx, for some a and 8 and for all x ?

All these are answered by giving a confidence band , ft,(x),t*(x)],

for t(x) simultaneously for all x.

Doksum and Sievers develop "nonparametric" confidence bands

by inverting a distribution free Kolmogorov-Smirnov test statistic

for H : F=G. This is their S-band. They give an approximate
0

weighted band (W-band) based on

wN = M sup IF(x)-G(x)l
4(H(x)}

where (t) - [t(l-t)] . They remark that this p maximizes the

minimum power against HI: F-G > 6 for some 6 > 0. They give a

third nonparametric confidence band (R-band) based on

IF(x)-G,(x)I
RN - m sup -

H(x)

the Renyi statistic. The authors present some tables showing why

they prefer the W-band to the R-band or S-band except when small

quantiles are of interest. Finally, when one is given a location
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scale model they give a confidence band from order statistics called

the 0-band. They remark that considerable gain in efficiency is

possible with H normal for the 0-band over the other bands. In the

Parzen approach the A Q model is based on the order statistics, Q.

Their example consists of a control group of m - 23 rats and

a group of n = 22 rats subjected to one component of California

smog, ozone. The weight gain was measured for each rat after seven

(7) days in their control or treatment environment. Their

Figure 2, a plot of the S-bands, gives six (6) interesting con-

clusions. They are:

(1) Ozone reduces average weight gain.

(2) Large weight gains are made even larger.

(3) Weight gain is reduced significantly for control

weight x < 22.5

(4) Since a horizontal line fits through .the S-bands, we

can not reject a shift model.

(5) With a possible outlier left out,t appears more linear

and thus O-bands could be used which also do not reject

a shift model.

(6) They remark that (2) and (3) are strongly suggested and

perhaps a larger N would allow the shift model to be

rejected.

The Parzen approach suggests differences in scale and location

by observation of the two groups quantile box plots(Figure C) when the

suspected outlier is included, and a lesser difference in location
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FIGURE C. Quantile Functions for Control and

Ozone Rat Data (with outlier)
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with no difference in scale when the "outlier" is deleted.

Graphical comparisons of the quantile functions for each group

suggests a lowering of location from -22.5 to I".1 with exaggerated

loss at lower quantiles and much less exaggerated gain at upper

quantiles.

Order
Statistics X3  X5  X8  XI5 XI7 XI9 X22

Qy 15.4 17.7 21.4 26 26.6 27.4 38.4

Qx -12.9 -9 6.6 15.5 17.9 28.2 54.6

AQ 28.3 26.7 14.8 10.5 8.7 -.8 -16.2

This leads us to remark that t actually levels off at less than 20

at the upper quantiles of x while it goes much below -20 at the

lower quantiles of x until the supposed outlier is encountered.

With this reinterpretation of their t one would agree that the two

approaches seem quite consistent, although we do not report a

confidence band for AQ in this table, see Theorem 6.2.

Continuing with the Parzen approach, we obtain estimates of

8= and a In for the following f families with the
01 01 0

"outlier" included:

__ P Values

f 8 'V(O) t yV(t) for H : :=O
o 0

Normal - .687 .298 .396 .211 .012

Logistic -1.531 .5t7 .503 .249 .002

Cauchy -1.78q .422 .185 .189 .00008



All are wihin 27. of 3 excePt the 1oistiz ";hich i. borderin=,

and all a are outside 2c^ of 0. So, the two samples differ

significantly in location and perhaps in scale if we assume the

logistic f 00

Further analysis was done omitting the "outlier" with similar

but slightly more revealing results. The quantile functions again

suggest more extreme shifts in the lower quantiles.

u .i .3 .5 .7 .3 .9

Q Control 15.8 20.5 23.5 26.2 27.4 29.2

Q Treatment -14.3 0.1 11.1 15.6 19.4 36.3

-30.1 -20.4 -12.4 -10.6 -8.0 7.6

We also remark that if the -16.9 of the control group waz an

outlier then perhaps the 54.6 of the ozone group is an "outlier"

also. One might conjecture by throwing out more of the tail behavior

in these data that the normal D would be the best fitting D(u)

model. Examining the D(u)-D(u) 3raphs (Figures D/E) , seem- to indicate the

Cauchy f does well with the outlier in and the logistic f does00

well with the outlier left out. We would rather accept the extreme

behavior of these rats weight gains unless some explanation could be

given as to the cause of an error in the measurements resulting in an

outlier. We also report the estimates of i and ) with the "outlier"

left out. Then, -K2- I)/S 1 - (11.01 - 24.'9)/6.68 - -1.97 and

(S2-S I)/S - (19.02 - 6.68)/6.68 - 1.35

1
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FILIPr D. Graphs of P(u) and D(u) for Rat Data with rh Outlier
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FIGURE E. Graphs of D(u) and D(u) for Rat Data Without the Outlier
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z for H.: ==

Normal - .341 .30 .556 .213 .0007

Logistic -1.73 .52 .699 .25 .00009

Cauchy -1.75 .- 3 .?234 .001

Now, without the one data point all 9 are bevond 2a. of 0 and only the

Cauchy is -within 2 . . Either the data are distributed Cauchv and

the samDles differ in location or the data differ in location and

scale and are distributed logistic or normal or some unknown other

possibility. In either case it appears the location difference is

dominant, since P !

;e also note that deleting the one possibie outlier did not

affect the or very mucn, ut -;id affect the logistic

and normal and . This points out the robustness of the Cauchv

model.

4.3 Corcnarv Heart Disease Data in Scott, et al. (1978)

David Scott of Rice Universi'y' presented a seminar at Texas

A&M where he ana!Tzed, for two groups of patients, measures of

plasma trvgivcerides and cholesterol. The aim of our analysis is to

examine their relation to coronarx heart disease. :n the control

-,roup "e have m = 31 Datie-ts -¢ith no histor7 of coronary heart

iisease and n. the treatment group we have n - 320 atients with i

history, of :oronar-- heart disease ,'C.." .D... T-he question is "How do

the n.o groucs differ in tr,glycerides and cholesterol levels?"
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Scoct's analysis estimated the bivariaze density functions of each

group and graphically compared them. Although there is a Parzen

bivariate quantile approach in the making, we only analyze the

marginal quantile functions of the two groups at this time.

First, we examine the tr-glycerides. Both groups have similarly

shaped quantile functions (Figure 7) indicating the distributions

may be skewed to the right. The C.H.D. group's tryglcerides tend

to be higher but also spread over the non C.H.D. group's

tryglycerides for approximately the lower quartile.

On examining a and 0 we see the predominant difference is

clearly ashift in location rather than scale.

Svalues

f for H : a-9-0
O J 0

Normal .441 .15 .006 .11 .01(

Logistic .797 .26 -.004 .13 .009

Cauchy .431 .21 -.013 .09 .013

Here D(u) for the logistic seems to match D(u) the best (Figure G).

The descriptive .Q again suggests a skewed distribution for fo0

since 2, (u) increases with u and 9 0.

u .125 .25 .5 .75 .875

Q for non CHD 32 91 120 160 195

Q for CHD 91 115 i5O 218 284

9 24 30 58 89

Since the iuantile functions give an indication of skewness, there

should be an f which would give more efficient estimates of i and w.3,
I-;
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FIGURE F. Quantile Functions for Triglycerides Data
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%.e now examine :he marginal iisrributions of cholesterol levels

for each group. The quantile functions (Figure H) are again similar

in shape but the C.H.D. group does have a longer tail suggested and is

shifted higher suggesting i > 0.

p values
for H : eyw0"0 '0

Normal .51 .15 -.03 .11 .003

Logistic .87 .26 -.05 .13 .00

Cauchy .44 .21 -.007 .10 .117

We conclude cholesterol levels differ in location only, regardless

of which of the three f are assumed. For this variable AQ is

much more consistent.
.i .2 .3 . 3 .

0 C.H.D. 168 130 191 236 248 267

non C.H.D. 150.5 161 169.5 208.5 222 239

_ 17.5 19 21.5 27.3 -6 Is

We also remark that the 3raahs of D(u)-D(u)(Figure 1) suggest the

logistic f may model these da-a well.0

4.4 Remarks on Examples

From these three example data sets we see that the quantile

approach agrees witA results of other authors' nonparametric techniques.

W.Te agree in accepting H', as in Switzer's data (section ;.. "e also

agree in rejecting H as in Doksum and Sievers' data
0
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FIGURE H. Quantile Functions for Cholesterol Data
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FIGURE I. Graphs of D(u) and D)(u) Versus u for Cholesterol Data
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(section 4.2). Also in section 4.2, Parzen's technique seems to

indicate the difference of the two groups is best explained by

both location and scale shifts rather than just a location shift

as it seems Doksum and Sievers may have believed when the supposed

outlier is thrown out. Wlen the data point is kept in we best

fit the differences with the Cauchy f and a location shift
0

similar to Doksum and Sievers results. At any rate the two approaches

partially agree and partially disagree. The Parzen approach also

models the data and gives some alternate explanation of what may be

going on-in these two groups of data. This points out how crucial

the assumption of that data point being an outlier can be. And

finally, in section 4.3 (David Scott's data) we see we can

reject H with various null families quite consistently, yet be0

led through the graphical techniques to alternate explanations

beyond the analysis performed. That is, we are led to consider some

f for our D estimator which are skewed. Although our approach
0

may ncw test H : = - 0 or F = G and estimate e and 0 for several
0

o some skewed or short tailed densities would also be of interest

in modelling some data.

-
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5. OVERVIEW OF THE LITERATURE ON NONPARAMETRIC

ESTIMATION AND TESTING OF LOCATION AND

SCALE PARAMETERS

The nonparametric estimation of location parameters was started

by Hodges and Lehmann (1963). Sen (1966) has extended this technique

to scale parameters.

In the decade of the 19 70's researchers developed simultaneous

estimates of both location and scale parameters. This section re-

views the relation of some widely used location and scale tests

with estimators in the location and scale model for D(u).

5.1 Location Tests

5.1.1 Linear Rank Tests and 9

Linear rank statistics are of the form

N
S = a(i, li)

i=1

where a is an arbitrary function of i and R~i, is a relative rank

of the X sample. S is a simple linear rank statistic if

N
S c. a(Ni)

i= 1

Many of the statistics for the two sample problem that have been

developed are simple linear rank statistics.
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(i) The Van der Waerden test statistic is

m R i

TI = , J (--) = - me
o +l

-l l

where J (u) = -(u) and 6 is based on the N(O,) fo.

This was developed by Van der Waerden (1952) and is asymptotically

equivalent to the Fisher-Yates-Terry-Hoeffding normal scores test

where J0(ui) is replaced by E[Jo(ui)], Hajek and Sidak (1967).

(ii) The Wilcoxon test statistic [Wilcoxon (1945), Mann and

Whitney (1947)] is

m m(N+l)
T 2 R = 2  - 6 0

for 6 based on the logistic f and Q given in Parzen (1979).
0

(iii) The median test developed by Mood (1950), Westenberg

(1948), or Mathisen (1943) is

m
T3 = 7 sign[R i - 2(N+1)] = m 8,

for 6 based on the double exponential f. and Q0.

5.1.2 Exceedance Tests for Location

These tests obtain their name from the fact that they are

based on the count of one sample's points which are either above or

below the other sample's maximum or minimum value.

They are rather special tests not ordinarily used in a standard

analysis. The following are taken from H jek and Sid~k (1967):
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(i) The Haga (1959) test with work by Sidak and Vondracek

(1957) is based on four quantities: A = # of Xi > max Y

A' = # of Y . > max X., B' = # of X i < min Y., and B = # of Yj < min

X. (i=l, ... , m; j=l, ... , n). Then the test statistic

T I = A + B - A' - B'

is optimal under special conditions for the uniform F where there0

is neither an optimal rank test defined or a e test unless we consider

using <fl,f2 , 0 < p < q < 1. However, the four quantities
p,q

A, A', B and B' are related to various comparison functions or D

and we mention the exceedance tests to show how they may fit into

the general approach taken here. Vken D(u) does not fit D(u) well

we may use the Haga test as it is related to various D(u). For

Dl(u) = FG (u) ( proportion of X's < Y) we know A = mrsize of

last jump in DI(u)]; B' = m[size of first jump in Dl(u)].

and B for D2 (u) = GF (u). Thus, the Haga

test is related to first and last jump sizes in the two comparison

functions D1 (u) = FG- (u) and D2 (u) = GF- 1(u).

(ii) Rosenbaum's (1954) test is a simpler test designed for

the alternative that Y is shifted to the right, e > 0. In our

notation this test statistic is mjl-D(u for max Y.)] and is more

easily adapted to the D(u) used here.
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5.1.3 Goodness of Fit Tests for Location

These tests are based on some measure of the distance between

F(x) and G(x). We present them here to show their relation to

D(u), and thus provide a wider statistical base for the importance

of D(u) and D(u).

(i) The unnormalized Kolmogorov-Smirnov test statistic is

T = max IF(x) - G(x)I . Kolmogorov (1933) developed this for a one-
x

sample test and Smirnov (1939) for the two sample test. For

D(u) = FH (u), we have

Ti- sup JD(u)- U

Durbin (1973) gives aderivation of the distribution of supfB(u) I which

may be used for studying the distribution of T. Graphically we plot

D(u) - u versus u and see if it significantly exceeds 0 in absolute

value which is determined by a given critical value from the dis-

tribution of sup tB(u)l

(ii) The Renyi test is also related to the comparison function

and weighted by H(x). It is

(n+m) IF(x) - C(x)T - max 9
A F(x) + n Gx)

where A = {x: (n+m) [mF(x) + n G(x)] = H(x) > a). Therefore,

T max [ D ( u) - ul
A H(x)
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(iii) The Cramer Von Mises test is related as follows

T = (n+m)X(l-X)f[G(x)-F(x)]2d
m F ( x ) + n G(x)

m+n

1 2
= (n+m)P(l-A)f [D(u)-u 2 du

0

where u H(x).

(iv) Finally, we also may remark that Weiss (1176) gives an

analogy which shows a two-sample test of H : D(u) - u = 0 can be
O

developed from any one sample goodness of fit test. Also, Pettitt

(1976) gives a two sample Anderson-Darling statistic

2 n+m-1 [M.(n+m)-n.]=' 2 nm:(-I "i i
A = - j- (- ) dH = IInm n-ro- mn L i(n+m-i)

- H (l-H) i=l

where M. = nD (-. Similar to 2.1.3 (iii) we obtain
1 n+m

2 .nm [D(u)-u]'d
A = nm " _du,

nm 0 u(l-u)

where u = H(x).

The point we can make with these goodness of fit tests is that

thev are all functions of D(u) - u. They can be computed from the

comparison functions and all measure the "size" of D(u) - u.

Parzen's D(u), as well as its extensions, attempts to model D(u)

and we will want to minimize the "distance" between D(u) and D(u).

In other words, we want D(u) to converge to the t-uth so that our

estimators, P and 4,are consistent. Other location tests and
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estimates are given in Table 3 (p. 29)

5.2 Scale Tests

5.2.1 Linear Rank tests and '

These tests are of the same form as in section 5.1, i.e.,
N N

S = a (i, %.) or ci a( .)
" However, the score functions

i=l i il

a(iPRi) or a(R i) are different in that They are devised to detect
N i Ni

differences in the dispersion or scale parameter of the two dis-

tribution functions F and G.

(i) The Klotz (1962) test is

T Ri 2
T= . [Jo(-7) = -2m ('a- ),
T, [i o (N+1 2 A

for f , the standard normal, where J (u) = "(u). Hkjek and0 0

Sidak remark that the Klotz test is asymptotically equivalent to
R

the Capon test where [Jo(N--)] is replaced by its expected value.

Our estimators P and ?P are linear transformations ot the Van der

Waerden and Klotz tests respectively when D(u) uses the normal

density for f . Each is an asympototically optimal test for f
0 0

the standard normal density function.

(ii) The Ansari-Bradley test is

m

T= 1 R(I+n i)-!R -(m+n+I) j
L 2
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m R.
m(N+l) 1 I(N+l)( -

N+l

m (N+-) m(N+l) (p-3)
12

where ' is calculated from Parzen's D(u) with f (X) =_ (l+lxl) - 2 ,

0 2

the density for which the Ansari-Bradley test is also optimal.

We note that the Ansari-Bradley test is formed in a manner

similar to the Wilcoxon test for location, but with ranks

modified to detect the scale difference. Sukhatme (1957) has

also introduced a modified Wilcoxon test for scale differences.

The Siegel-Tukey test is similar but allows use of the Wilcoxon

tables for small samples. Though the Ansari-Bradley and Wilcoxon

tests are formed similarly they are optimal for different densities.

Through this implementation of Parzen's (i 80) approach we

obtain both location and scale tests for each density, as well as,

the estimates (these were given in Table I (p. 9) for completeness).

For example, a location difference test and estimate for f(x) -

1 )2I (l+Ix)2 can be obtained from

3r R. R. R

m sign( --- ) min ( 1 Lm i- Il N ) ai (N'i -N)

The quartile test for differences in scale seems to be another

example of a nonparametric test for one parametric difference

which has had no corresponding test for location difference

advocated which assumes the same density. In Table3 (p. 29 we give the

I.i
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test statistics which we advocate for this f
0

(iii) The Quartile test developed by Westenberg (1948) is

T3  N+I N+l.

T 1 m sign(1R1 - 21 - -- ) + 11
i= 1

31 -2 -1

z # of x obs. (H-I(.25), H-I(.75))

= m[l - D(.75) - D(.25)]

It is related to the comparison function that we use here and

a D(u) model can be obtained from the density for which it is

asymptotically optimal, i.e.

f(x) - 1 , I i -

I , xi > 1

16x 
4

Using this density for f in Parzen's D(u) model we obtaino

2 m R ( (N+l) , -(N+l)I

i 4 '4

for an estimate of the scale differences of the two samples.

The location difference estimate obtained simultaneously was given

in Table 3 (p. 29).

(iv) The Savage test [I.R. Savage (1956)) is asymptotically

optimal for the exponential density and is defined as

m N
T - J -I-

i.j
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The exponential density-quantile function, fo[Qo M) is not

in the RKCHS used to obtain 0 and e on the whole interval (0,1].
1 1

However, if we truncate the interval to U- 1 - N] we may still use

all of the data to obtain an estimate of D(u). However, we need

an algorithm to compute 6 and for whatever the sample sizes

are using the <fl,f 2>1  1 as given in Theorem 2.6.

N' N
This algorithm may also be used to truncate left and/or right

portions of the combined sample. The result is quite different

from the Savage test and is discussed in section 2.4.

(v) In Table 3 (p. 29) we also gave the scale tests developed from

Parzen's D(u) model which correspond to the logistic, double ex-

ponential, and Cauchy families for f . Those 0 functions provideo

formulas for testing equality of scale, and thus extend the set

of nonparametric tests at our disposal by combining a location

and scale test optimal for the same density.

5.2.2 Exceedance Tests for Scale

A variation of the location Haga test is due to Kamat (1956)

and has test statistic T - A + B' - A' - B where these components

are defined as in the Haga test (see 5.1.2 (i)).. We remark that

this exceedance test is also a function of jump sizes in

D1 (u) - FG- (u) and D2(u) - GF-I(u). Simpler versions of the

Kamat test are given by Rosenbaum (1953) and Klotz (1962). We

mention this to give an indication of the work done relating to

comparison functions other than D(u) - FH- (u). These tests

I.
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provide comparisons for further research for Parzen's (1980)

DI(u) and D2(u) techniques.

5.2.3 Goodness of Fit Tests for Scale

Hajek and Sidak (1967) remark (p. 99) that one can make the

Kolmogorov-Smirnov, Renyi, and Cramer Von Mises tests more

sensitive to differences in scale by successively subtracting

smallest and largest pairs of C [see Hajek and Sidak (1967)]CDi

rather than subtracting CDI, ... , CD successively. So, one

can compute a goodness of fit test in two ways, one sensitive to

location differences and one sensitive to scale differences.

Again, we see the attraction and need for simultaneously estimating

location and scale differences for a given problem, H F G.

We emphasize that Parzen (1980) has both a location, e, and

-1
scale, %, component in the D(u) estimator of D(u) - F(H (u)],

the comparison distribution function, which are asymptotically

optimal for the same f . In the following section (5.3) we remark
0

on some relationships of Parzen's (1980) methods with various

robust, adaptive, and combinations of other techniques.

5.3 Remarks on Some Other Approaches and Extensions

5.3.1 Combinations of Separate Tests for Location and Scale

Duran, Tsai, and Levis (1976) have combined tests of location

and scale to also simultaneously test for equality of both

parameters. They use Randles and Hogg's (1971) result, which states

r .
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that under Ho, even translation invariant statistics (Mood, Klotz,

and Ansari-Bradley) are independet of odd translation invariant

statistics (Wilcoxon and Normal scores). Then using Chernoff and

Savage (1958) they obtain the asymptotic normality of the test

statistics under H and, with more conditions, an asymptotic bi-o

variate normality result under certain alterratives. Their

alternatives are similar to Parzen's D(u) model where we assume

6 and * small.

They gave no examples, but we still may make some comparisons.

More research is needed for their techniques to be evaluated on

examples and they did not provide any methods for estimating the

location or scale differences. Parzen's approach naturally leads

one to simultaneous location and scale tests for the same underlying

density which is not the case with the even and odd statistics. For

example, combinations could be the Wilcoxon and Ansari-Bradley

(different f ) or Quartile and Median (different f ) or Normal

scores and Klotz (f0 = normal) tests. The analogous result from

Parzen's D(u) model is that it is asymptotically optimal for one

f0 (examples in Table 1, p. 9). For local alternatives there is

a simultaneous test for location and scale. From Corollary 2.2,

it is

L.Ny

i-
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and is approximately a X 2(2); but, 0 and * also estimate the

differences in parameters of the two samples [Parzen (1980)].

In section 3 we use D(u) - D(u) to help choose f0 correctly. Further,

section 6.3 methods will estimate the differences between samples

at any percentile or quantile as well. Lepage (1975, 1976)

also gives many results on the distributions and efficiencies of

this method of combining tests. Other authors have tried to form

tests which are insensitive to differences in one of the parameters

while they are sensitive to differences in the other.

5.3.2 Robust and Similar Tests 01

The classical F-test for H - 1 has been found to be non-
0a2

robust to deviations from normality with respect to size by many

authors. Shorack (1969) examines an approximate permutation test,

a "Jacknife" procedure and some "rank like" and other tests fora I01

H: -- 1 by considering their Pitman asymptotic relative ef-
0

ficiency and Monte Carlo studies of power. Shorack's simulation

included the uniform, normal, and double exponential densities.

The rank like tests do not use all the scale properties of a

continuous variable but have other desirable properties as given

in Moses (1963). The permutation test (APF-test) is an approxi-

mation based on an F statistic and a minor variation (for

locations unknown) of an approach used by Box and Anderson (1955).

It has the same asymptotic relative efficiency as the F test but a

very different robustness level as seen in the Monte Carlo results.

• i
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Shorack also invei.s this test to obcain a confidence interval for
()2

(' . Another quite practical test which did not do badly
a2

in the simulation for m - n.was Levene's (1960) test. Although

assumptions are violated, Levene suggested doing an ANOVA on the

means of -2 (Y - . The jacknife like procedure
meas o( X) } and ( Y )21-

also requires m = n and jacknifes the logarithms of sample

variances. It was on a par with the APF test in terms of
2

power. The rank like tests were also an ANOVA of log Si where

iiS i is a scale parameter estimator for a subgroup of all n or m

observations. The APF test was reported to do quite well in

comparison to the others. The approximation of the APF test

statistic's distribution makes it attractive for small samples,

but it seems quite cumbersome especially in confidence interval

calculation. It does not help one choose f nor does it decide0I
anything about the location parameter differences.

Some of the earliest attempts to deal with the two sample

problem were also approximations. Murphy (1976) compares the

t-test, Aspin-Welsh approximate t-testand Wilcoxon test by

simulation. The Aspin-Welsh approximate t statistic is

m n
t - ( - 7 . _ 1

where

22
1- c + 1c

df (m-l) (n-l)

and
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s 2  s Y2

given by Welsh (1937) with critical values by Aspin (1949). The

three tests were compared for normal, uniform, and exponential

f densities. It is interesting that Murphy concludes the

Aspin-Welsh test is highly satisfactory for Ho: P1 1 2

when oI + 02 while the Wilcoxon-Mann-Whitney is not. Murphy

also pointed out that no test was satisfactory when skewness was

present. We may choose f and calculate our results even foro

f skewed. When one assumes f normal and aI + a2' testing

Ho: Ul = V2 is known as the Behrens-Fisher problem. Sheff4

(1970) presents practical solutions to the problem. It

appears Behrens (1929) and then Fisher (1935a) began this expansion

of the two sample location problem by considering aJ + a2 . This

was Sir Ronald Fisher's (1935a) controversial paper, "The Fiducial

Argument in Statistical Inference." He also proposed nothing

less than a randomization test, also in 1935, in his book, The

Design of Experiments. Many authors have studied the robustness

of the t-test with respect to a. Posten (1978) did an extensive

simulation study. He did his study of the t-test over 87

Pearson curve distributions where the level of the test was e~timated

from 100,000 generated t-values, except for one case (nm30 had

"only" 83,000). Posten varied n from 5 to 30, B1 from 0 to 2,

and B2 from 1.4 to 7.8. Postenpoints out the obvious conclusions from

his tables; i.e., the t is very robust with respect to m when n a a.

4'.
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In fact, all tabulated significance levels round to .04, .05, or

.06 through the whole simulation study which had nominal level a - .05.

Other authors [e.g. Pearson (1931), Geary (1947), Finch (1950), Gayen

(1950) and Box (1953)1 have shown that this is not the case with the

commonly used and taught F-test for variance.

Since the t-test is very robust with respect to a, we should

choose a linear rank test based on power or other considerations,

not the accuracy of significance levels. In this regard, Fligner

and Killeen (1976) have introduced analogues of the Ansari-

Bradley, Mood, and Klotz tests which have the same Pitman ef-

ficiency, but significantly higher powers for small samples.

They respectively are

m

T = [m(n+m)]-  R i
ill1

[m(m+n) 2 i , and
i- 1

-1m3 i1l 2 (N+l) ,

where Ri is the rank of VI  l Xi - ml among the combined sample

of Vis and Wj j - ml where m is the median of the combined

sample of (X and (Y . These tests may be chosen on the basis of

small sample power, where we would choose Parzen's (1980) tests

relating to D(u) based on simultaneous estimation of 8 and * or

graphical and statistical help in choosing f . Perhaps these
0

authors' "score" functions can be interpreted in a way to help

1.
, a.
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develop more small sample estimators for the Parzen approach.

Other authors have conjectured, if one can not reduce the influence

of nuisance parameters in a particular test, perhaps one can

adapt to the influence of the nuisance parameter and obtain a

more powerful test of that particular parameter. Ie, in fact,

model both the location and scale differences in the work here.

5.3.3 Adaptive Type Tests

Sen (1962) and Potthoff (1963) have attempted adapting

rank tests for location to adjust for unequal variances by a

conservative approach. However, many of the rank tests then

became dependent on f . Others have been more successful.

Hogg, Fisher, and Randles (1975) have designed adaptive location

test procedures for skewed distributions. Very few nonparametric

or robust procedures consider how to detect or what to do when

skewness is present. Parzen (1979, 1980) has also given techniques

to help detect bimodality, as well as skewness,by using an auto-

regressive density estimator. Hogs (1976) also remarks on a

possible adaptive two sample scale test where one decides to use

a Kamat, Klotz, Ansari-Bradley, or quartile test based on the

combined order statistics.

5.3.4 Other Approaches of Interest

Korwar and Hollander (t975) have given an empirical Bayes

estimator for F(x) which is optimal for a Ferguson Dirichlat

prior. Perhaps they would want us to develop a Bayes D(u) and

S.
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D(u). The first problem is to determine when this prior is

adequate.

Censored modifications for the Kolmogorov-Smirnov test have

been given by Tsao (1954) and Ishii (1958). Mehrotra and Johnson

(1976) extend results in Hajek and Sidak for asymptotically most

powerful tests in the two sample problem to apply to censored

data, i.e., the first r observations. As mentioned in Parzen

(1979, 1980), one can truncate the reproducing kernel Hilbert

space estimates by using <fl, f2> where 0 < p < q < 1 or use
p,q

an inner product based on the censored observations.

Other directions to go include the Wald andWolfowitz (1940)

runs test and any relation it has to these methods. Also, Sen

(1963) has investigated a class of tests based on linear combin-

ations of the number of Y between X and X which can be
£ Mi (i+l)

related to the spacings of the jump points in D(u). Eubank

(1979) provides one sample optimal spacings which can be generalized

to the two sample problem.

With regard to estimating scale differences, Bhattacharyya

(1977) has given techniques based on Sen's (1966) modification for

scale parameters of Hodges and Lehmann's technique for estimating

location shift. Bhattacharyya provides estimators of Ya 2

corresponding to the Ansari-Bradley, Siegel-Tukey, and a modified

Sukhatme test. Lambscher and Odeh (1976) have also proposed

practical methods for estimating scale parameters from a
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Sukhatme test. Duran (1976) gives a review of approximately 80

references on tests for scale with many comments on these and

other tests. One is the Barton and David (1958) test, not covered

here. The great number of techniques Duran comments on makes it

impossible to be very detailed for any; but, he gives many valuable

comments and references on comparisons of these tests and "minor"

modifications of them. Also, Zuijlen (1977) extends much of the

rank tests' distribution theory to tle non i.i.d. case. Other papers

of particular interest deal with comparison function techniques.

5.3.5 Comparison Function Techniques

Wilk and Gnanadesikan (1968) stimulated research in the area

of probability plotting where they use Q-Q and P-P plots to compare

data sets. A Q-Q plot is essentially a plot of the Y quantile

function versus the X quantile function (see seption 4.2), the

points being joined for a common u, i.e., G-1F(x) versus X - Qx(u).

-i -i
P-P plots are a plot of uX = QX versus uy = Qy where QX = QY

at each point. Switzer (1976) and Doksum and Sievers (1976)

extend the graphical work of Wilk and Gnanadesikan by developing

confidence procedures for various comparison functions used in the

two sample problem. They estimate a general treatment function,

t(x). Since they include the data sets in their papers, we are able

to compare their results to those developed here (section 4).

Steck, Zimmer, and Williams (1974) have also developed

confidence bands based on D2 (u) = G[F- I(u)] or DI(u) - FIG-1(u)].
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Further research may generalize this to D(u) - F(H- (u)] and

provide some further comparison of the two. Doksum (1974) has

also given the asymptotic distribution of t'(x) = G [F(x)] - x.

Doksum and Sievers (1976) have also begun developing confidence

bands with or without a location scale model being assumed. They

also invert two sample statistics for their bands. Their location

scale m al is

02 02 12
t'(x = 2 01 (X-14l)-X = o2 - 1. 01+ (I ~

V2 - (2-i) + 0 X.

12-1 02-O 1

In this case, simultaneously estimating e = I.L-- and 2
a I 0 1

is not done. However, they have given a likelihood ratio confidence

band for f normal when m = n. Further research could compare thiso

with Parzen's (1980) techniques for estimating

D'(u) = d(u) = f[G -(u)]

g[G- (u)]

the likelihood ratio for the two samples which does not require

m - n. Doksum and Sievers show asymptotic equivalence to M.LE.

bands and remark that an advantage of their's is that it can be

applied to censored data. Again, Parzen's (1980) techniques have

a potential for censored data analysis which can be further ex-

plored. They also remark that some of their numerical results show

that the general bands are quite Inefficient if the correct model

is normal. This gives us a motivation to use D(u) in helping

I.I
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identify the correct f . We do it both for statistical reasons of
0

efficiency and scientific reasons of identifying a correct model.

We conclude this section with a few comments on some of the vast

amount of research concerning the two sample problem.

5.4 Remarks on the Literature Review

The Behrens-Fisher problem remains open 45 years after the

work for which it was named and the list of several more general

approximate solutions grows. The approach of Parzen (1980)

implemented here has many of the aspects of several of the other

authors through the decades. Hopefully, it will contribute to at unified approach by consideration of D(u) and D(u) which nearly

all the previous techniques are related to in some way. Thus far,

only asymptotic properties of D(u) have been given; however,

since 8 and , directly relate to linear rank tests, they provide

an easy extension to calculation of simultaneous estimates of

location and scale differences and use of the finite sample size

linear rank tables. This helps unify the techniques of sections

5.1.1 and 5.2.1. We also see the importance of D(u) in the

exceedance and goodness of fit tests. The relationship of

D(u) to D(u) will help utilize goodness of fit tests in choosing

the correct linear rank test. By matching D(u) to D(u) we will

not just adapt the scale differences and estimate the location

differences or vice-versa. Rather, we will simultaneously

estimate location and scale differences and by comparing the

11F
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results for various f os, determine which family should be assumed

for a good fit. This has begun to be explored in sections 3.1

to 3.2.

One method of obtalning a rohii.t etfmarite Is to trim the data.

This can be explored by considering 0 < p < q < I rather than

p= - q =0.

The recent research on many different comparison function

techniques provides techniques to compare with Parzen's (1980)

approach using the comparison function, D(u) = F[H (u)]. This

is begun in section 4.

One problem with the two sample research has been simultaneous

testing of location and scale differences. This approach clearly

will provide a solution, i.e., from Corollary 2.2, we have

L Ny RX'(2)

under H : F G where ; is the location component and ; is theo

scale component. One can easily see which difference has a

greater change with respect to a1 at least. Another problem,

especially with nonparametric or distribution free tests, has been

to estimate the difference once one has been detected. Parzen's

(1980) technique provides local estimators, 0 and b, of the differ-

ence. With AQ we estimate U2 - UI and a2 - a1 under Ha .

This pair exists for many useful densities and each estimator is

asymptotically optimal for a common density. Another problem

which the adaptive tests are designed to deal with is to first

make a decision about the type of f and then an independent testi °

.. '



)
104

of a parameter difference using the decision about f 0 Parzen's0

approach using D(u) and D(u) gives the asymptotic distribution of

3 and p given fo" The results in section 3 lead to a minimum

distance choice for f among the set of f that one considers.0 0

By examining the 8 and * for each f we gain an indicztion of

00the importance or lack of importance as to which fow hol

assume. By examining the residuals, D(u) - D(u), we use both the

location and scale parameters to decide on f . However, the

estimators of e and are functions of the Ri so a topic of further

research could be to try to obtain an independent choice of fo"

Still the scientific interpretations may lead one to consider

several models for the data although a statistically more powerful

test may exist choosing just one model. In fact, the adaptive

answer is to choose f based on D and then, independently estimate0

aQ* We may do this, since {Ri) are independently distributed of

{X(i) .

A common problem that robust techniques try to deal with is

having a known f for the data but shifted location and/or scale0

for part of the data. As mentioned earlier, using 0 < p < q < I

would be a common technique for dealing with this problem. There is

an indication the truncation does well with the Cauchy f ino

Rothenberg, Fisher, and Tilanus (1964). This can be further

explored. Also one may attempt to model skewness with appropriate

f in the D(u) model or AQ(u) model.



.-cot-, &t. al. (.976) have presented a bivariate -ensitv

estimation technique which also helps deal with blaodality. We

also analyze his data set in section 4.3, although not with a

bivariate approach. Presently very few approaches attempt to

estimate skewness or bimodality differences of two sampLes.

Soma indication of how this might be done with a quadratic D(u)

model is given in section 6. For other directions of research

see Parzen (1979, 1980) or section 6.

#
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6. SONl \I. rEINATVlE MtI)ODELS FOR I)()

In our approach, just as in ordinary regression, one wili often

consider more than one model for the data.

With our D(u) model we assume an f family for the underlyingo

densitv, although we give techniques to help choose it. We also

assume a linear Taylor series expansion is adequate and that 9 and

-, are small. If ' and 4, are found to be of moderate size we may

wish to improve the expansion by including more terms as in Section 6.1.

Rather than including more terms, we may use the AQ (see 1.10)

model which is accurate under the alternatives 0 # 0 and/or V # 0.

In section 6.2 we do this,still assuming that the underlying

familv is the same for both the X i and I There we suggest es-

timatorq of -u rather than 8 and a2 - 01 rather than

2 -1
- ~ If we had no idea which f would model the data, we

0

may wish to construct a model which converges to the correct f
o

and is, in a qense, f free. In the past the convergence has been
0

quite 4tow and tests have been less powerful than those which assume

f known. However, in section 6.3 we suggest methods to be exploredo

which make still fewer assumptions than those made thus far

regarding fo"

6.1 The Quadratic Model

In this section we give a ouadratic expansion which results in

an alternate model of D(u) containing some of the quadratic terms, i.e.

t of Ithose of the quadratic expansion of F° about -- "

0 0
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in sec:ion : we represent G(x) in ter'ms of F as follows (when

i and j, are small)

x-u 1  x-u IG~x) • Fo  -i - -,---
oW aa

X-U, X-M

A quadracic Taylor series expansion of F (-I) about gives

XU~~ CC-

12

x- 1 x- 1 x 1

G(x) "- ( - )-fo(-l )  - -- ]

Again, letting x - H-(u) I F (u) V-+C1 Q (u) as on p. 18, gives

Qo(U) A-" and0 1 1

C -)(u) H1 - u) - f (U) C6 Q (u) ?h fQ(u)J (U) [e2 -2Q(U)

+ Op,2 Qo 2(Ml]

Since H(x) - kF(x) + (1-k)G(x), we have for x - H ku)

2

HH- (u)AFH (u)4+(I- )[FH(u)-6 f Q (u)-.Q (u Q (uf>tE Q(u) J (u)
0 0 0 0 Cu - 0Q 0  0

2

+-*f 0 (U)o (u)O +I. Q (U)J (U)Q (U)
00 0 0 0 00 0 0

and, since D(u) - FR' 1 u) , we have

u D(u)-(l-M)f 0 0 (u)-,Q O(u)f 0 (u)+e'f oQo U)J 0 U)

Sy' f Q U)J u)O fu)+,*' 0 (u) J (U)o Cu)]
0.0 0 0 0.0 a .0
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where 0' -!t , $,nd. Finally,

D(u)-u4(l-A)18f 1(u)+pf 2 (u)+'f 3 (u)+'f 4 (u)+O'f 5(u)] ,

where f (u) = foQ (u),f2 (u) - Qo(U)fOo(U),f3 (u) - Jo(u)foQ (U),

f4 (u) = Q (U)J (u)foQo(u), and f5 (u) - Q 2 (u)J (U)foQ (u).

If the fI(u) are in the RKHS of B(u) with p 1 1 - q - 0, then

we may estimate e, *, 0', y', and *' provided we treat 0', y',

and *' as free parameters. For computational convenience we would

do this to begin with. This model gives us a 5 x 5 matrix, E

rather than a 2 x 2 E as in the linear expansion. In fact, for I5

and in this quadratic expansion we need fifteen and five inner

products to exist respectively. One may try to orthogonalize E5

to reduce the problem. We suspect the shapes of f Q (U)J (u) -P(u)

and foQo(U)30 (u)Q2 (u) may be useful detectors of bimoeality

and skewness respectively. We leave this for further research.

6.2 The AQ Model

As shown in Theorem 1.1, Parzen's (1979) model for Q(u) in

the one sample and scale problem gives an asymptotically exact

two sample model for Q (u) also. In this section we further

develop this model by suggesting estimators of p,2-ul, o2-ol, and

AQ(u) based on Parzen (1961, 1967). We also give the asymptotic

distribution of these estimators and some remarks on their use in

the analysis of two sample data.

4 • ... . g - - i ,
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The model for AQ (u) suggested by Theorem 1.1 is

foQ 0 A Q (u) = f oQo (u)+oQo (u)foQo (u)

with the following estimator

foQo (u)A Q(u)u" foQo(u)+AOQo(U)f 0 (u)

obtained using Parzen (1979) results.

We suggest estimators of U . U2 - i1 and A, M 2 - a1

in Theorem 6.1 and give their asymptotic distribution.

Theorem 6.1: If thu conditions of Theorem 1.1 hold and f oQ

and Qo(foQo) are memhiLs of -he RKHS of B(u) for p = I - q - 0,

then as N ' such rkth )-- m - X (0 < X < 1), we have
A'N o 0

the ;I N 
-0 

c 
su2 

Eh-11 =

a2 0 2

where~ NUAMC at 2  [ ) 2  2]
r a 2 l ¢2 c2  - XoO2+(-o)a2 2 and i and

are as given in Parzen (1979).

Proof: From Csorgo and Riive'sz (1978), Parzen (1979), and Eubank (1979)

we obtain for i - 1 or 2,where ni denotes the i
t h sample size,

,/i f oQo (u) [Qi(u)- 1i-CiQo(u)] G oi B(u),

and further (using Parzen (1961, 1967)],

9 ,.. . ,
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ii 2 1

Fi N 2  (0a ' 2-1

Letting A =u 2 - I and A 5 02 O, we obtain

aA ~ D 0 2 -1
(a aA 6U D N2 K[0 ), c 2 2E- ]

222 -1 -1

where c2  = a 12 + (i- ) 2 , since N = n1 A N =1 n2 (l-XN)- and XN O °

as N-c, and linear combinations of independently distributed random

variables converge to the linear combination of their asymptotic limits.

Corollary 6.1: If the conditions of Theorem 6.1 hold, then

A and A are given by

A( K2 - A3 A

where E is given in section 2, .l and 12 are given in Parzen (1979)

and Eubank (1979) for i - 1, 2 as

<),QO (f Q )Q >

0Q0 >

and we define 43 = - "1

Proof: By definition of A and A Ji * 12 - r

By definition of matrix operations, 1 1 2-r -lE 1 (112 - 1 1 ) =E-113 ,

since 93-12-ZL1. Then,by definition of inner products, since



-1 -2 - 1 we note tha:

<foQo , o Qo(Q2 Q l)

13 =  <Qo(foQo) ,fooo(Q 2.l )>

Remarks: We call al(u) 0 Qy(u) - Qx(U) Lhe raw difference of

quantile functions at the quantile u and aQ(u) - QY(u) - Q (u) the

estimated difference of quantile functions at the quantile u.

These names are suggestive of our interpretation of A Q(U). Note

that this interpretation and modal of AQ(u) are asymptotically

exact under all location and scale alternatives of Ho: F - G,

i.e., 9 0 0 and j # 0. However, since c2 involves the scale

parameters, we note that in using the estimators suggested here,

as in Parzen (1979) and Eubank (1979), we presently need to

treat c2 as a free oarameter. The implementation and adequacy

of the treatment and model is a oroblem for further research. We

emphasize that aQ (u) may be estimated independently of D(u).
Q!

Next we give a definition and the asymptotic distribution of

(u), 0 < u < 1. Let I (u) a r fo0 (U)(. (u)- AQ(u)] be the

standardized Q (u) so thakt A5 (u) a 0 for 0 < u < 1.

Theorem 6.2: if the conditions of Theorem 6.1 hold and f3 is 0I
symmetric, for { ui e(0,1); i - 1, ... , k and A(u)=(as(ul), AIs(u2).

then as N - such that (N 0 < I < 1), we
N 0 0

have

A ( ) N ,(o, c.,'.,

I.
-'-~(U C"... . .
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where Z k  ij (note k is singular when k > 2) and

FoQo(u i)fQ(U.) o (u of Q(u )f 0 (u
a.. 0 00 1 00 00 j

Lj fIJo2(u)du f I[L1-Qo(U)Jo(U) 2 du

Proof: Since

A (u) L(%)
s ao

whcre

foQ0o(U1 ) Qo(U )f 0Qo(u1 )

foQo(U2) oU 2  ooU2
)

o o (U2 Q 0(u 2)f o Q (U 2

L " N

foQo(u k Qo(uk)fQ oo(uk )

A A D 2-
and since, p. o N 2(Oc 2 E-), we have

(u) D Nk(O, L c22 r
- I L')

Clearly, Ek L - (oj) implies oij is as desired.

iii
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Remarks: For this AQ(U) estimator we may directly apply the results

of Eubank (1979) and choose fuf; i = 1, ..., k I for small k as

he suggests. We may also use {ui; i = I, ..., N I where

Qy(u) or Qx(u) have jump points, i.e., ui corresponding to the data

points.

A model for AQ(U) provides many problems for further research

besides those mentioned thus far. For example, as Professor W. C.

Parr has pointed out to me, if a plot of AQ (u) versus Qo(u) is

linear, then F and G are location and scale shifts of the dis-

tribution corresponding to Q0 (u). Further, the intercept of the

vertical axis is P2 - Ul and the slope of the line is o2 - a V

Tests and estimates based on this fact are a topic of further

research. We also leave the Brownian bridge representation of

Q(u), A Q(U), and A Q(u) - A Q(u) as topics for further research.

We remark that the residuals, AQ(U) - A (u), once their distribution

was derived, could be used to select an appropriate f to model theo

data for any location and scale alternative hypothesis of H : F - G
0

for independent samples.

Finally, although we do not address the k-sample problem in

this work we offer Theorem 6.3 for the following definition of

the k-sample problem to suggest further research.

Suppose we have k > 2 independent random samples, denoted by

{Xji j = , . ., k 1 , ... ni
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where n is the sample size of the jth random sample and each sample

th
is n realizations of the j random variable X . Further,j jx-1J.

suppose X. has distribution function F. (x) = F (aJ_) where F3 3 o00. 0

satisfies the conditions of Theorem 6.1. This is essentially

a generalized analysis of variance problem studied by White (1981)

and similar to a problem studied by Hajek and Sidak (1967),

chapter 3, section 4, and Sen (1962), but more general. In the

following theorem we may study a general contrast of the location

parameters and the scale parameters simultaneously for the k

populations.

Theorem 6.3: For this definition of the k-sample problem, let
k

{aj = 1, .... k } be fixed constants, f- ajQ (u),
j=l

k k kI = J~ aj ,P and I a -- ao " Then as N I-Jl nj such that

aN=  J Xo (0 < Xoj < 1); j .. ,k, we hv

A f oqo0(U)[Q (U)-t-t ° aQO(u)) c 3 B(u)

ari

S ao  t a N 2 [( ) , -c3 1,

k k
where ' ajj and . jlaj o, and lj and J are as in Par-en

2 k 2 2
(1979) and Eubank (1979). Finally, c3  J1, a. X aoJ aj-l ~o

Ja

- - -----



k
VN a- V 3 -(ju)

- J~l j  j j

gives

k 2 2 -. 2 1-I"laJ aj ) r. -C3 ,

for the variance-covariance matrix needed. Clearly, the asymptotic

mean is zero.

6.3 Raw 0 and J -stimators

7or the D(u) model suggested by Parzen (1980) we have im-
61 - U 1  a2 - 'a1

plemented estimators of 9 -- and p -- given f . Our

(u) model also depends on f." A topic of further res-oagch is to

develop estimators which conver;e to f and provide estimators of the
0

location and scale parameters. tn this section we suggest an

approach to this topic.

Suppose we accept the linear approximation in D(u) but do not

have a viable choice for f . We may then consider studying the0

technique proposed in this section. For the inner products in
- £ we only need Q and J Parzen (1979) gives a consistent

estimate of Q in Q and Hajek and Sidak (1967, p. 260 equation (7))

give a consistent estimate of J, denoted J, which are each functions

of che order statistics.

4.
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Then Parzen's (1980) model yields (for symmetric f )
0

fo 1 [-J (u)ldlD(u)-u]
8 = 0

1[J (u) 1 2 du

and

f0
1 [I-Q ° (u) (u)ld[D(u)-u

which are solely functions of Qo, Jot and the data, D. We need

appropriate definitions of J and Q using the data based on Q and

J perhaps. Further research may explore these estimators from

Parzen (1979) and Hajek and Sidak (1967).

One of the difficulties in the problem would be to combine the

two samples' different Q and J to obtain the 6 and i estimators.

b:
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7. EVALUATION OF D(u) THROUGH SIMULATION EXAMPLES

As in any regression model, our regression model for D(u)

from Parzen (1980) may not contain the correct independent

variables and error term. We have added sections 2, 3, 4, and 5

to Parzen's arguments for using the D(u) model and show how it

provides useful information whether we reject Ho: F - G or not.
0

As suggested in the remarks of sections 4 and 5 and in the con-

fidence regions for 8 and/or i in section 2, we desire to make

inferences using 6, 1p, and D(u) when we detect that 8 # 0 or

' 0. We also provide the Q (u) model which we know may be used

when 8 0 0 or p # 0. As mentioned in sections 2.4 and 4.2, we

also become interested in trimming our estimates of 8 and * for

some particular densities or in the presence of suspected outliers.

In section 7.1 we make remarks on a design for 4 simulation study to

evaluate the accuracy of the D(u) estimator. In section 7.2 we

give a few simulated examples with "large" 0 and ?P for six different

densities and m = n = 30.

7.1 Remarks on Factors of Interest in a Simulation Study

In this section we propose that a simulation study of D(u)

and A Q (u) include:

QI
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(1) investigation of the effects of 0, 4P, n, and m on the

estimates in D(u) and AQ(u) for various f , and

(2) investigation of the potential value of truncation of the

estimators inD(u) and AQ(u) when the two samples have some con-

taminated observations.

Each of the factors involved in a design should be at several

levels. We propose e, t, n, m, fo0 and contamination as the

factors. Some dependent variables of interest are:

(1) D(ui) - D(ui) , AQ(ui) - AQ(ui),

(2) D(u - D(u) A Q (u i ) - (ui),

(3) 0e-eO, Au -A,
U JA

(4) * -', A° - a,
(4)a ar

and various functions of these quantities, for example, mean

square error, bias, and variance of the estimates. We would expect

the main effect of each factor to be significant in predicting

most of the dependent variables. Also, if the e x * interaction

were not significant in its effect on a dependent variable, as we

hope for small and moderate 6 and *, then the simultaneous estimation of

location and scale parameter differences will pose no problem

beyond the ordinary estimation problems of an individual location or

scale difference that researchers have traditionally dealt with.

The implementation of this simulation study is a topic of further

research. The next section reports on six simulated examples.

1- . . . .. . , I ii - i



119

7.2 Simulated Examples

While in section 4 we compare the approach here with analysis

of "live" data sets from other research, in this section we report

on a few simulated examples to begin to explore the situations

where our D(u) model will obtain reliable results. These examples

demonstrate the need for further research ard understanding of tie

techniques developed in this work.

We generated six data sets and submitted them to analysis. All

six pairs of samples used m = n = 30, e - .5, and 0 - .5. One pair

was generated from each of the six di.stributions given in Tables 5a

and 5b. This means each of the ; in Table 5a and each of the 4P in

Table 5b are estimating the true value of .5. The N, L, C, D.E.,

A.B., and Q denote the normal, logistic, Cauchy, double exponential,

"Ansari-Bradley", and "quartile" densities respectively. The '*' by

an estimate denotes the estimate is beyond two standard deviations

(under H : F = G) from its true value of .5.0

The theoretical error rate under H 0:e = * 0 is approximately0

2
.05 + .05 - (.05) 2 .0975 for a given f . Since we have noo

replications we are unable to draw any conclusions.

It is pleasing that 56 of the 72 nonparametric estimates were

within two standard deviations of the true e or * for two reasons,

although we make no conclusions regarding the results without replica-

tions. One reason is that five of the six columns of Table 5 have

estimates from a nonoptimal f . The other reason is that a^ and o
0 4,

are derived under H F - G, rather than nonzero values of e and0

;:.2.i-_. -- --
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Sa. Simulated 0rxamples,

A True f
0 0

Assumed N L C D.E. A.B. Q

.26 N .22 .50 .62 .21 .20 .86

.45 L .31 .87 1.15 .47 .31 1.72*

.37 C -.08 .27 .82 .44 .20 1.41*

.26 D.E. 0 .27 .53 .4 .13 .93

.22 A.B. -.l6* -.03* .23 .37 *Q4* .54

.08 Q .01* .16* .08* .04* .007* .23*

5b. Simulated iJExamples

True f
0

Assumed N L C D.E. A.B. Q
GA f
i 0

.18 N .52 .29 .24 .26 .40 .37

.22 L .68 .35 .30 .31 .50 .44

.16 C .29 .12* .12* .08* .16* .12*

.26 D.E. .83 .43 .39 .37 .60 .52

.63 A.B. 1.74 .77 .80 .50 1.07 .75

.26 Q .93 .27 .27 .13 .27 .27

a^ Y'(O) and a^ V A(q) under H F-
'II 0
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as in these examples. Perhaps some questions of interest suggested

by Tables Sa and 5b would involve testing location parameters with

f the "quartile" density and testing scale parameters with f theo 0

Cauchy density.

A definite topic of further research is to determine what

values of 8 and V may be used with reliable results for the D(u)

model.

I

iq
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8. CONCLUDING REMARKS

Here we summarize what we have done, what we have not done, and

make suggestions for further investigation and implementation. We

begin with the mathematical results.

8.1 The Mathematical Problem

With Parzen's (1961, 1979, 1980) time series regression models

using the quantile function we have provided new theory and methods

for studying how two samples differ in location and scale parameters

and at all quantiles. These methods assume continuous increasing

F and all but the exponential densities were symmetric about zero.

Nevertheless, the body of simple linear rank theory and methods for

location and scale parameter differences has been expanded and made

more complete. The test obtained using Parzen's (1980) D(u) model is

a simultaneous location and scale test when the two population dis-

tributions are a location and scale shift of a common distribution.

These tests are nonparametric, but still provide estimators of tte

location differences by e and the scale differences by , when f iso

the correct density. We also give computational formulas for 8 and

p simultaneously or individually for several underlying densities.

By examining the residuals, D(u) - D(u), for a finite set of

u values we are given some guidance in selecting the underlying

density f which seems to model the data better than others. This0

also provides a criteria for selecting which set of nonparametric

I .
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tests and estimators to use.

There is always the possibility that D(u) will not fit D(u) well.

By examining D(u) - D(u) at different values of u we may see which

quantiles contribute more to the deviation of D(u) from D(u). The

willing user may also suggest his own f and go through the estimation
0

and testing calculations to obtain another f which may model the data

better. In any event, our significance levels are correct as given in

Corollary 2.2 and Theorem 2.7. The other confusing possibility would

be that several f would fit the data well. In this case we would
0

need to check if all 9 and i were consistent and remark that a larger

sample size will be more discriminating. Eubank's (1979) optimal

ui for a given density may become valuable in this discrimination

process. Also of interest here are the alternate models of D(u).

We discuss what consequence these techniques have for the

scientist who analyzes two sample data.

8.2 The Scientific Problem

Given two samples from an experiment, often a treatment and

control group, the scientist is faced with determining how the

two samples differ and trying to model and explain that dif-

ference. This implementation of Parzen's (1980) models provides

a general location and scale approach. The test statistics

and estimators for parametric differences are easily cal-

culated from the ranks of the X observations in the combined

sample of X's and Y's and f . Where an eiristing simple liner rank
o

i.I
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statistic is a linear transform of 8 or , there are finite

sample size tables which may be used if n and m are not large.

There are also several graphical comparisons of the two samples

provided. The slope of D(u) provides a likelihood ratio type com-

parison function of the two samples at each quantile. We also

provide a graphical comparison of the differences of the two

samples at each quantile, i.e., Qy - QX"

Besides the graphical comparisons for 6Q one may develop

tests of H : F = G versus a difference in location and scale.
0

Also provided are the tests and estimates of location and scale
u2-uI  02-01

difference by considering 8 = - and 2 0 . In addition,
a

whether these differences are zero or not, D(u) - D(u) provides a

criteria for choosing an adequate density to model the data. One

may also leave one of the differences out and see whether the other

difference alone is an adequate model of the differences of the

two samples. That is, one may use D(u) - u - (l-X) 9 f Qo (u) or

D(u) - u - (l-0) V Qo(u) f Q (u) rather than both terms at once,

as illustrated with the exponential in Theorem 2.3. In this case,

we merely drop some terms from the distributions developed for D(u),

D(u) - D(u), and 6Q(U).

-' t
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